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Abstract. This work describes algorithms for performing discrete ob-
ject detection, specifically in the case of buildings, where usually only
low quality RGB-only geospatial reflective imagery is available. We uti-
lize new candidate search and feature extraction techniques to reduce
the problem to a machine learning (ML) classification task. Here we can
harness the complex patterns of contrast features contained in training
data to establish a model of buildings. We avoid costly sliding windows to
generate candidates; instead we innovatively stitch together well known
image processing techniques to produce candidates for building detec-
tion that cover 80-85% of buildings. Reducing the number of possible
candidates is important due to the scale of the problem. Each candi-
date is subjected to classification which, although linear, costs time and
prohibits large scale evaluation. We propose a candidate alignment al-
gorithm to boost classification performance to 80-90% precision with a
linear time algorithm and show it has negligible cost. Also, we propose
a new concept called a Permutable Haar Mesh (PHM) which we use to
form and traverse a search space to recover candidate buildings which
were lost in the initial preprocessing phase. All code and datasets from
this paper are made available online3.

1 Introduction

Rapid detection and classification of discrete objects such as buildings in geospa-
tial imagery has many applications such as damage assessments by comparing
before and after building detections [Voigt et al., 2007] [Dong and Shan, 2013]
[Brunner et al., 2010]. Large scale change detection at an object level can enable
computer assisted updating of maps by identifying new or removed objects be-
tween multiyear satellite imagery [Bonnefon et al., 2002]. This could also allow
for the next evolution of the USGS National Land Cover Database (NLCD) anal-
ysis [Xian et al., 2011]. Also, in a national security interest and in the funding
motivation of this research, ontological analysis can be performed using the spa-
tial arrangement of groups of buildings to identify large manufacturing, power
generation, and weapons proliferation sites.

3 http://kdl.cs.umb.edu/w/datasets/
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Problems restrict the usage of existing research which require camera align-
ment information (azimuth and zenith angles) and/or special equipment that
captures near-infrared channels. Runtime is also a large factor which restricts
the scale of deployment. In this work we present a combination of methods which
have minimum imagery requirements (they work on common grayscale imagery)
and provides scale and rotation invariant detection with a relatively inexpensive
computation.

The first contribution of this paper is our method does not depend on sliding
windows to generate building candidates (Section 2.1). Building candidates are
rectangles, identified by a center, height, width, and rotation, that likely contain
a building. If these were generated using a brute force sliding window approach
processing an image very expensive because the centers can be any pixel, the
width and height can be any combination (non-overlapping), and the rotation
can be between 0◦ − 180◦. We devise a linear time strategy utilizing building
shadows as a major feature because they are high contrast straight ‘L’ shaped
feature unique to man made objects [Irvin and McKeown, 1989] [Lin and Nevatia,
1998] and [Karantzalos and Paragios, 2009].

The second contribution is how we align buildings in linear time to increase
classification accuracy (Section 2.2). We utilize a summation of Gaussians each
centered and scaled depending on the direction and magnitude of the vectors
that form the contour around a building. We describe a linear time algorithm
for computing this and show it has a negligible cost as well as a significant
performance gain of up to 5% accuracy.

The third contribution is our candidate Permutable Haar Mesh (PHM) search
method that heuristically searches nearby candidate boxes to find buildings via
a greedy graph search algorithm (Section 2.4). Because we utilize Haar contrast
features [Viola and Jones, 2004] for their supreme performance; if our building
candidate box does not properly cover the building it will not be considered a
building because its feature distributions won’t align to learned examples. The
PHM approach is expensive and is not part of our rapid solution but can be
employed to increase accuracy if it is really necessary.

2 Method

An overview of our method is shown in Figure 1. First (in Figure 1a) Canny edge
detection is run using a range of threshold values. The Canny edge detection
[Canny, 1986] a fast straightforward method uses high and low thresholds to
determine edges and using only one set of threshold values would not discover
all buildings (Discussed in Section 2.1). Instead, all possible combinations of
threshold values are used limited by a step size between the values. The resulting
binary images are processed for contours (Figure 1b) in linear time [Chang et al.,
2004]. Each contour is considered a candidate. Some of the resulting contours
are filtered out based on a minimum number of pixels that can be used for
prediction and if they are redundant to other contours by only differing by less
than 5 pixels.
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Input Image

(a) Canny Edge
Detection

(b) Contour
Generation

(c) Contour
Alignment

(d) Rotation,
Scaling,
and Grayscale

(e) Extract Haar Features(f) Build Model

Fig. 1: An overview of the method is shown. First (a) Canny edge detection is run
using a range of threshold values. The resulting binary images are processed for
contours (b). Each contour is considered a candidate. These contours have their
alignment detected (Note: a different building is used to illustrate this) (c). They
are then rotated to standard alignment, scaled to a standard size, and converted
to grayscale (d). For every candidate, Haar image masks are extracted from fixed
locations to capture contrast (e). Next these contrast values are discriminative
enough to build a model and make accurate predictions (f).

These contours have their alignment (Figure 1c) detected automatically (Note:
in the figure a different building is used to illustrate this). Section 2.2 discusses
the rotation method. The candidates are then automatically rotated to a stan-
dard alignment, scaled to a standard size, and converted to grayscale for Haar
feature extraction (Figure 1d). This rotation is so the Haar features will have
more correlation when a model is built.

For every candidate, Haar features are extracted from fixed locations to cap-
ture contrast (Figure 1e). Haar features have been successful and proved rapid
and robust by [Viola and Jones, 2004]. To extract a Haar feature, a rectangle is
first overlaid at a specific and consistent location on the image. The rectangle
is split in half and the pixels inside each half are summed and subtracted from
each other. The resulting value represents the contrast at that location in the
image and can be compared to other images. Combinations of these features
will be discriminative enough to build a model (Figure 1f). This model can then
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be used to predictions when given unseen Haar feature values from a new test
image.

To complement this method we present an optional step (due to computa-
tional cost) which is a novel candidate permutation method called a Permutable
Haar Mesh (PHM) to increase recall of candidates via greedy graph search (Sec-
tion 2.4). Recall is an evaluation metric representing how many buildings have
not been missed, this metric is complementary to precision which represents
how correct each prediction is. Candidates are surrounded by a bounding box
and permuted by moving their top, bottom, left, and right boundaries in order
to properly cover a candidate and capture buildings that would otherwise have
been missed because the candidate didn’t properly cover the building.

2.1 Candidate Generation

We utilize building shadows as a major identifier of buildings because they are a
high contrast feature which provides largely straight ‘L’ shaped contours unique
to manmade objects [Irvin and McKeown, 1989] [Lin and Nevatia, 1998] and
[Karantzalos and Paragios, 2009]. Canny edge detection [Canny, 1986] is still
the state of the art edge detection method that can capture these shadows well.
The result of Canny edge detection is a binary image representing the edges of
the input. Candidates are isolated by applying a linear time contour generation
algorithm [Chang et al., 2004] which groups together edge pixels and returns a
set of vectors that trace along these edges forming a contour. Each contour is
considered to be a candidate building, we will also call the derived forms of this
contour a candidate such as a bounding box around the contour and the image
pixels within this bounding box.

Canny edge detection has two hyperparameters, a high and low thresholds
for hysteresis thresholding. Canny edge detection works by first computing the
gradient of the image using the contrast between pixels (scaled between 0 and
1). Gradients below the low threshold are filtered out and will not be considered
edges. Gradients above the high threshold are set as edges and any remaining
gradients that are connected to edges are set as edges. One combination of
parameters will likely not return correct candidates for all buildings in an image
as shown in Figure 2 because too high of a threshold can cause gradients of
objects that neighbor buildings to become part of its contour while too low of a
threshold may cause the gradients of a building not to be considered. These issues
are almost always the case when buildings vary in size in the same image because
gaps in high gradients along the side of a building require lower thresholds which
will cause smaller buildings to be connected to neighboring objects.

In order to be scale invariant the union of the resulting contours from many
different combinations of Canny threshold parameters are used to form the set
of candidates. If the candidates generated in Figure 2 from the three different
pairs of threshold values are merged together then all buildings will be included
in the candidate set. However, as more threshold values are included, more non-
buildings are included as well and create a challenge to later steps. Threshold
values are chosen from a grid which is parametrized by a step size which controls
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the density of the grid. As the step size is decreased, more threshold values are
included which results in more candidates. Section 3.1 studies the trade-off when
decreasing the step size in order to maximize precision and recall.

Input Image
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Fig. 2: This figure shows the application of Canny edge detection (center) and
contour detection (right) at various threshold values to generate candidates. Red
dashed boxes on the left show candidates that enclose buildings and green check
marks are candidates that will be classified as buildings. As the high threshold
parameter to the Canny edge detector is varied from 0.1 at the top to 0.9 at
the bottom different contours are generated. There is no perfect parameters to
generate correct candidates for both buildings.

2.2 Building Contour Alignment

Contours resulting from Chang’s contour detection [Chang et al., 2004] are rep-
resented by a set of vectors c and each component vector ci. From these vectors
we want to determine the aggregate direction of the object they represent. By ro-
tating these candidates into alignment before extraction of the Haar features, the
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features become more discriminative and will result in an increase in accuracy
of the trained classifier (explained in §2.3).

Determining the aggregate direction is difficult because buildings may not
have their walls parallel to each other and the edge and contour detection meth-
ods may have introduced noise in the vector directions. Consider the simple ex-
ample in Figure 3; suppose we have a contour made up of four vectors with the
following directions and magnitudes (30◦, 5), (31◦, 5), (120◦, 3), (120◦, 3) which
would appear to be a rectangle with the longest side as the dominant edge. If
the assumption is made that the majority of the walls length will point in the
dominant direction of the building then we should be able to sum the vectors
with the same angle to determine which angle the majority of the walls align
with. However, taking the sum for each direction would not capture the similar-
ity of angle(ci) = 30◦ and 31◦. They would be considered independent and Eq.
1 would result in 120◦ as the dominant direction of the building which is false.

argmaxθ
∑
ci∈c
{|ci| : θ = angle(ci)} (1)

We need to tolerate this noisy data and take these situations into account because
contours can be even more complex and misleading as seen in Figure 4. To
accomplish this we use a method similar to a kernel density estimation which
utilizes a sum of Gaussian distributions, one for each vector’s degree normalized
by its magnitude, shown in Equation 2.

argmaxθ
∑
ci∈c


(

|ci|∑
ci∈c |ci|

)
︸ ︷︷ ︸

Normalized Magnitude

1

σ
√

2π
e
− 1

2

(
θ−angle(ci)

σ

)2

︸ ︷︷ ︸
Gaussian on orientation

 (2)

To determine the alignment direction we evaluate the summation for a specific
input degree from 0◦ − 180◦. Algorithm 1 formalizes this method. For each con-
tour segment ci the angle α is determined using the arctangent. The Gaussians
are normalized based on their magnitude to the sum of all magnitudes. The
maximum θ is then found by iterating over 180 possible angles. Figure 4 shows
this method not only handles the specific issue we discussed of non parallel walls
but also tolerates noise in the contour data. Noise meaning jitter in the angle
of the vectors as they wrap around the building. This can be due to pixelation
error during capturing the image, contours containing vectors that don’t overlap
the building walls, or non-rectangular building shapes. This rotation method not
only increases classification accuracy but does so with negligible increase in time
(shown in §refsection:lineareval).

2.3 Building Candidate Feature Construction

To build a classification model that can filter candidates into building and non-
building, we need features that can discriminate effectively and are efficiently
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∠c1 = 30◦, |c1| = 5
∠c2 = 120◦, |c2| = 3

∠c3 = 120◦, |c3| = 3 ∠c4 = 31◦, |c4| = 5

Using Eq 1 Using Eq 2

Max
of 120◦

Max
of 30◦

Fig. 3: Comparing the direction information obtained from the two discussed
equations we can see a disagreement. The input contour contains four vectors
(ci, 1 ≤ i ≤ 4) Eq. 1 results in an aggregate angle of 120◦ while Eq. 2 results in
the a more expected direction of 30.5◦ because it is the mean of the angles. For
our application rounding to 30◦ and 31◦ would both yield satisfactory features.

Max
of 99◦

Max
of 42◦

Fig. 4: Histograms of the Gaussian summations of contour components evaluated
at specific angles when Algorithm 1 is applied to candidates A (left) and B
(right). Our method correctly identified Candidate A at a 99 degree angle and
candidate B at a 42 degree angle.

computed. Haar features have been shown to quickly capture discriminative
contrast patterns effectively [Viola and Jones, 2004]. They are generated by
taking a rectangular image mask and dividing it into two rectangles, with a
horizontal or vertical division. The sum of the pixel values in one rectangle
are subtracted from the sum of the pixel values in the other. Haar features are
discriminative in face and crater detection [Cohen and Ding, 2013] because these
domains have similar contrast at specific positions of the candidates. In this work
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Algorithm 1: Rotate Building Candidate

Input: Contour c
Output: Rotated Contour crot

1 K ← {} // Set of Gaussians

2 for ci ∈ c do
3 xdist← ci.x− c(i+1)mod|c|.x
4 ydist← ci.y − c(i+1)mod|c|.y
5 if ydist < 0 then
6 xdist← −(xdist) // keep angle between 0◦ and 180◦

7 ydist← −(ydist)

8 α← atan2(ydist, xdist) 360
2π

// angle of contour segment

9
σ ← 1 // stdev of Gaussian distribution

λ← |ci|∑
ci∈c

|ci|
// normalization factor

10 fci,c(i+1)mod|c|(θ) = λ 1

σ
√
2π
e
− 1

2

(
θ−angle(ci)

σ

)2
11 K ← K ∪ {fci,c(i+1)mod|c|(θ)}

12 cangle ← maxθ(Σf∈Kf(θ))
13 crot ← rotate(c, cangle)

each candidate is scaled to 200 x 200 pixels before Haar features are extracted.
Horizontal and vertical Haar features are extracted in a sliding window fashion
which extracts square regions from the image systematically from the top left
to the bottom right. Square regions are extracted with pixel width 40, 80, and
100 are applied with a step size of 10 pixels. Also, square regions are extracted
with width 20 with a step size of 5 pixels in order to capture small details.
This yields a total of 3592 features. Each feature represents the horizontal or
vertical contrast in that region with a signed integer value. A value of 0 means
no contrast where a positive or negative value represents contrast in the positive
or negative direction. The sign of the number is dependent on the order of the
subtraction during extraction and is only useful for comparison.

By aligning buildings and adding padding to expose its edges, which have
high contrast, we are able to obtain contrast patterns between candidates. For
example the Haar features being extracted in Figure 5a will statistically expose
higher contrast in candidates which contain buildings due to the edges of this
buildings appearing in the same location across examples. Also, roof texture
and the surrounding area texture may also be consistent enough to provide lin-
ear separable distributions of values with respect to a building and non-building.
In order to gain more insight we analyze the top weighted Haar features in the
Linear AdaBoost classifier in Figure 5b where it can be seen that edges of build-
ings are very discriminative. We are able to conclude that the statements from
previous work that find shadows a dominant feature are correct. Shadows will
generally exist at the edges of buildings and provide strong contrast values at
the edge of the roof where the shadow begins. Together, many of these features
allow us to obtain a linear separable feature space to achieve accurate classifica-
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tion. One problem that arises from using these features is when buildings have
black roofs the contrast between the roof and the shadow is very low and might
appear to be very similar to a solid surface.

(a)

This is a
Haar feature

(b)

Fig. 5: (a) Example of a Haar feature being extracted from building candidates
at the same position on multiple candidates in order capture the contrast at the
edge of the building. (b) The three highest weighted Haar features of a Linear
AdaBoost classifier in descending from left to right. The distribution of values
extracted from Dataset A for each feature is shown at the bottom to show their
linear separability.

2.4 Candidate Permutation Search (PHM)

Some candidates are lost during the initial preprocessing step due to contours
that cover part (or too much) of the building as shown in Figure 6 This leads to
a misalignment of Haar features.

To solve this problem we present a Permutable Haar Mesh (PHM) algorithm
which iteratively permutes the building candidate using a custom heuristic func-
tion to search the space shown in Figure 7. We perform a multi objective greedy
search (for speed) using the following function (for accuracy) based on the result
of a classifier:

H(can,L) =
2

P(bldg)︷ ︸︸ ︷
L+(can)(1−

P(not bldg)︷ ︸︸ ︷
L−(can))

L+(can) + (1− L−(can))

Here we take the harmonic mean of L+(can), the probability that can is a
building, and (1− L−(can)), the complement of the probability that can is not
a building. Using a greedy search we evaluate each permutation and select the
best increase in probability at each step of the iteration until we cannot improve
the hypothesis probability. This method is outlined in Algorithm 2.
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Fig. 6: Example of contours that overdetected a candidate. The green and red
lines are the contour lines. The bounding boxes can be repositioned to detect
these buildings.

Algorithm 2: Greedy Candidate Permutation Search

Input: Candidate can
Permutation Rate r
Heuristic function H

Output: Best Candidate best

1 d = r · (bottom−top)+(right−left)
2

2 P ← {can+ (d · p)|p ∈ {


x0
x1
x2
x3

 |xi ∈ {0,−1, 1}}

3 best← argmaxp(H(p)) where p ∈ P
4 if best 6= can then
5 return permute(best) //if H improved continue search

6 else
7 return best

2.5 Complexity

Our method is O(n) for generating candidates which places the training com-
plexity on the classifier used. Each candidate generated as a negative example
adds to the complexity. This can be reduced by generating less negative examples
but this may also generate a classifier with lower performance.

When utilizing the classifier our method is O(n) in terms of pixels or candi-
dates. In the worst case every pixel could be considered a candidate which would
be determined in linear time using Canny edge detection and Chang’s linear con-
tour detection, we call this n. When sampling and merging using a specific step
we incur a fixed cost dependent on the step size chosen. For 0.05 this is 400 lead-
ing to a potential 400n candidates to evaluate. Our rotation method is based on
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Fig. 7: An example of the PHM search space being traversed in a greedy manner.
Each potential permutation becomes a link which represents a new frame that
Haar features are extracted from. The red lines indicate the path taken during
the search to cover candidates.

the number of vectors in the contour (c) of the candidate. The maximum number
of contours would be the number of pixels in the candidate. Our approximation
method solves this in 360|c|. Each candidate then has a fixed number (4, 240)
of Haar features extracted which is one initial cost of the candidates pixels for
an integral image and then 4 additions per Haar feature. When using a linear
classification model, such as Naive Bayes or AdaBoost on linear decision stump
classifiers, each candidate can then be classified in linear time.

3 Experimental Evaluation

In order to evaluate our method we looked for publicly available datasets that
would allow us to study the errors when applying methods to the average resi-
dential buildings as well as unique industrial buildings. [Mnih and Hinton, 2010]
has generated a benchmark dataset using MassGIS which contains average resi-
dential buildings but industrial buildings such as coal and nuclear power plants
are not released by MassGIS. Because of this we have built a dataset of nuclear
power plant buildings that can be shared with the research community. We uti-
lize these two datasets in order to showcase the robustness of our algorithm on
imagery with various quality and content.
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(a) Dataset A Ground Truth (b) Dataset B Ground Truth

(c) Dataset A Negative Examples (d) Dataset B Negative Examples

Fig. 8: Shown here are samples images of the two datasets used in analysis. All
images are automatically cropped and rotated based on their contours. At the
top we have ground truth buildings and at the bottom are negative examples.

Dataset A (Figure 8a) was constructed using images from Google Maps 4

with various resolution, size, illumination, geographic region, building size, and
building purpose. There are 411 buildings in this dataset which are mostly non-
residential including large industrial and power generation. These buildings can
be very unique to a specific purpose and vary greatly in size.

Dataset B (Figure 8b) is a labelled subset of the dataset used in
[Mnih and Hinton, 2010]5. We used a higher resolution (15cm/pixel) version
of the same imagery acquired from MassGIS (coq2008 15cm jp2). All buildings
have the same illumination. This dataset is of a contiguous area composed of
mostly residential buildings. In total there are 1337 buildings.

We use these datasets to first evaluate the recall obtained by our method.
Recall is an evaluation metric representing how many buildings have not been
missed, this metric is complementary to precision which represents how correct
each prediction is. After this we discuss how our positive and negative examples
are constructed to train a classifier. This is followed by an analysis of candidate
alignments effect on these examples on various classifiers. We then discuss how
we can increase recall with our PHM method can recover candidates and achieve
better accuracy at the cost of a more computationally expensive method. Finally
we evaluate the runtime of different components of our algorithm.

4 https://maps.google.com/
5 http://www.cs.toronto.edu/∼vmnih/data/
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3.1 Candidate Recall

It is important that we achieve high recall in order to not miss any potential
buildings using our candidate generation method. Unfortunately there are some
complications that we had to overcome. Using a single high and low Canny
threshold value we are only able to achieve low recall values. In Figure 9 we
explore all possible configurations of low and high threshold values on dataset
A. These results show a strange surface due to a trade off of capturing different
sizes of the buildings. There does seem to be a peak but it is very low ≈ 60%.
Some buildings are only identified as candidates at specific threshold values
so changing them misses some while finding others. The problem is that these
values are not the same for every building in a dataset as shown in Figure 2. This
observation leads us to our solution, because some buildings are only captured
by different threshold values.

Fig. 9: Here all possible high and low threshold values from 0,0 to 1,1 for the
Canny edge detector are evaluated on dataset A with step size 0.05. The recall
value is plotted and we can observe a spike at 0.2,0.4. Further inspection reveals
that different buildings are being captures at different combinations resulting is
no one maximizing combination of threshold values.

To solve this problem we generate candidates by sampling and merging the
results of candidate generation at many different threshold values. The question
now is what Low/High threshold values to use. We experiment with various step
sizes through the space (0,0) to (1,1) in Figure 10. As the step size is reduced
from 0.2 to 0.01 the recall increases at a diminishing rate. However, there is
trade-off that must be made when choosing a small step size. In Figure 11 the
total number of candidates that must be evaluated is analyzed. As the step size
is reduced the total number of candidates increases to numbers that are much
larger than the number of buildings that exist in those images. This may not
only increase running time but also decrease overall performance by increasing
the chance that a classifier may misclassify.
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To put more context on Figure 10, in dataset A we start with 411 labeled
buildings and our preprocessing step is able to find 86% when generating about
90,000 candidates. In dataset B we start with 1,337 labeled buildings and our
preprocessing step is able to find 80% when generating about 240,000 candi-
dates. To put this in perspective, without this preprocessing step, because the
centers can be any pixel, the width and height can be any combination (non-
overlapping), and the rotation can be between 0◦ − 180◦, a small 1,000 x 1,000
image can easily generate over 1 billion candidates using a sliding window for
just one image in order to achieve 100% recall.

Fig. 10: We vary the step size used to generate candidates. As we decrease the
step size, meaning more samples, the recall increases and we are able to capture
more of the buildings.

Fig. 11: We vary the step size used to generate candidates. As we decrease the
step size in order to gain higher recall the number of candidates increases.
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3.2 Training Set Construction

To learn an accurate classifier requires constructing a training set containing dif-
ficult realistic examples of what will be presented to the classifier during testing.
We run the candidate generation process and subtract the positive examples.
This process includes candidates that partially overlap the ground truth in or-
der to train on examples that may be misclassified during testing. Our goal is to
select strong representative examples that we expect to reside near the decision
boundary of a classifier.

For all the evaluations following this section, 10-fold cross validation is used
to calculate the F1-Score obtainable with a classifier. We define the F1-Score as
follows:

F1 =
2

1
recall + 1

precision

precision =
true positives

true positives + false positives

recall =
true positives

true positives + false negatives

Dataset A has 383 positive and 4,912 negative examples. Dataset B has
992 positive and 11,488 negative examples. The number of positive examples is
less than the total ground truth number because some candidates are excluded
because the 5% padding that is added goes out of the image bounds and is not
included. The datasets are balanced in order for the classifiers to properly learn.
This is done by randomly sampling with replacement to add duplicates to the
positive examples.

All experiments are performed with the AdaBoost classifier unless otherwise
noted. In the next section we compare many different classifiers. The Weka im-
plementations of these algorithms are used with their default values.

– AdaBoost is an ensemble of weighted linear classifiers with one feature
each. The classifier is trained for 10 epochs with a weight threshold of 100
to prune the weights[Freund and Schapire, 1996].

– Naive Bayes assumes all variables are conditionally independent with re-
spect to the class label. This classifier then simply uses Bayes’ rule to de-
termine the probability of a class attribute given feature values [John and
Langley, 1995].

– J48 constructs a decision tree by iteratively splitting each tree node if clas-
sification error is reduced when discriminated by an attribute. The Weka
version is based on the C4.5 implementation by Quinlan and uses the de-
fault confidence value of 0.25 to estimate error [Quinlan, 1993].

– Random Forest constructs decision trees from subsets of features which are
drawn uniformly with replacement from the global feature set. 100 trees are
constructed. Each decision tree is constructed similar to J48. The resulting
classification is a majority vote by all trees for a class label [Breiman, 2001].
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– Support Vector Machine: The Weka LibSVM implementation of C-SVC
was used as described by [Cortes and Vapnik, 1995]. A radial basis kernel
was used with the parameters ν = 0.5, γ = 0, loss = 0.1, cost = 1.

3.3 Rotation impact on classifiers

Analysis is performed to evaluate the effect of rotating candidates on the overall
pipeline. To demonstrate the versatility of this step we evaluate many classifiers.
In Figure 12 it can be observed that rotating candidates increases the F1-Score
of standard classification algorithms.

Fig. 12: We compare AdaBoost (with linear decision stump classifiers), Naive
Bayes, J48 Decision Trees, Random Forest, and SVM (with a radial basis func-
tion kernel) classifiers applied to datasets A and B via their F1-Score with and
without rotation of the candidates.

To evaluate the following classification methods we generate candidates from
each training set using the sample and merging method with step size 0.05
and form an isolated set of candidate images so that 10-fold cross validation can
easily be performed. The results here are the metrics from these isolated sets and
therefore don’t reflect the impact of recall loss from the preprocessing method
which is analyzed in Section 3.1.

We evaluate AdaBoost because it was used as part of the Viola and Jones
face detection pipeline [Viola and Jones, 2004]. AdaBoost is expected to be well
suited for this task because it performs feature selection on the many Haar
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features generated from the candidate in both situations. This is however not
the case. AdaBoost ranks among the worst classifiers evaluated.

We evaluate Naive Bayes and J48 Decision Tree classification models as base-
lines which are quick to train that we expect the reader will be familiar with. A
random classifier was used to confirm 50% F1-Score indicating balanced train-
ing data. We also evaluate Random Forest and find it to outperform all other
methods.

The previous classification models discussed can rapidly be trained and uti-
lized in comparison to a Support Vector Machine (SVM) with a non-linear kernel.
We were able to evaluate Dataset A using an SVM with a radial basis function
kernel. However, due to the computational cost we are unable to evaluate Dataset
B using an SVM because the algorithm did not terminate in 72 hours. It is in-
teresting how poorly the SVM model performs. We can speculate that it may
be caused by noisy or irrelevant Haar features. A large amount of features may
cause the classifier to weight features inappropriately and skew classification.
The increase in performance after candidate rotation may indicate this as it
causes features to have a higher discriminative ability which can more easily be
separated.

Overall, every classification method had its F1-Score increase after the align-
ment of candidates. The most significant increase was for an SVM classifier.

3.4 Best PHM Permutation Rate

The primary goal of our preprocessing method is to maintain high recall. If candi-
dates are still missed we can use the PHM method to salvage over/underdetected
candidates as outlined in Section 2.4. This method is analyzed in Figure 13 to
study how the F1-Score is impacted as the permutation rate is increased. For
these experiments we used one combination of high and low Canny threshold
values instead of merging many values together which yields lower recall values
from the start.

In Figure 13 as the rate of permutation increases so does the recall. However,
similarly as the permutation rate increases the precision falls. The increase in
precision error is due to more candidates being presented to the classifier which
appear to be buildings as a result of the PHM process itself. A compromise is
found at the peak of the F1-Score plot of 0.01.

3.5 Linear Time Feature Extraction

Our machine learning pipeline runs in linear time as theoretically explained in
Section 2.5. We empirically evaluate the runtime on a single 3.07GHz Intel Xeon
CPU. However many parts of the algorithm are easily made parallel to achieve
major speed improvements.

The first way to empirically show this is during the initial contour extraction
phase analyzed in Figure 14a. Here images are processed one after another, the
total number of pixels processed is plotted against the time taken. Here it is
observed that aligning the contours only slightly increases the processing cost.
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Fig. 13: Our pipeline using Canny threshold values of low:0.2/high:0.4 varying
the permutation rate on both datasets. A permutation rate of 0.01 is able to
increase recall while maintaining precision to yield a higher F1 value.

In Figure 14b we perform the same evaluation but allow the process to con-
tinue to the step of extracting Haar features from every candidate. A strange
result is that it takes less time when we add the rotation step. An answer for
this may be that the scaling phase before Haar features are extracted is sped up
because images contain less edges on diagonals.

In Figure 15 we evaluate the entire pipeline and observe that our basic ma-
chine learning (ML) approach appears significantly faster than PHM. For every
candidate encountered during the algorithm the PHM will search possibly 100’s
of surrounding candidates to find a better match. From our experience the ma-
chine learning approach appears to work in almost realtime on reasonably sized
images.

4 Related Work

Automated labeling of aerial images has been a motivating problem for re-
searchers for a very long time [Irvin and McKeown, 1989]. The development
of an automated system to identify discrete objects, such as buildings, has been
a much sought after goal. Many techniques from the field of computer vision have
been employed, as well and statistical machine learning approaches. A number of
surveys including [Mayer, 1999], [Baltsavias, 2004], and [Druaguct and Blaschke,
2006] indicate the depth of this field.

Unlike our method which relies only on RGB images, much work has been
done using very high spatial resolution (VHR) multispectral data, [Sohn and
Dowman, 2007] synthetic aperture radar (SAR) data [Simonetto et al., 2005] and
light detection and ranging (LIDAR). This information has been used to filter
out sections of images corresponding to non-building areas such as vegetation or
water. Information such as azimuth and zenith angles has been used to calculate
the shadow locations and near infrared to better determine building shadows
from plant shadows [Ok, 2013].

Working only with images, other researchers have explored techniques using
many different types of features that can capture texture information, color,
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(a) Contour generation

(b) Haar feature extraction

Fig. 14: Here we show the impact of rotation on runtime during the contour
generation (14a) and Haar feature extraction (14b) parts of the process.

shape, and contextual information. Simple features can be built using the color
and intensity of pixels, and gradient based features have also been used. Local
scale and rotation invariant features like Lowe’s SIFT [Lowe, 2004] and the sped
up version SURF[Bay et al., 2006] have been evaluated [Yang and Newsam, 2013]
[Sirmacek and Unsalan, 2011].

Shadows have been picked up as a powerful building indicator that can be
identified by simple algorithms similar to ours [Irvin and McKeown, 1989] and
[Wei et al., 2004]. Machine learning has been employed extensively, with vari-
ous systems using features to train classifiers such as Support Vector Machines
[Mountrakis et al., 2011]. Lately, deep learning techniques such as Convolutional
Neural Networks have been used to good effect [Mnih and Hinton, 2010].

Our method stands out from these other approaches because of our focus on
speed and applicability to all geospatial imagery because our method only needs
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Fig. 15: Here the runtime is evaluated using the complete pipeline for our ML
and PHM methods.

pure RGB images and does not require a near-infrared channel or azimuth and
zenith angles. Also, unlike other methods we provide an implementation of our
method.

5 Conclusion

In this paper we describe algorithms for reducing discrete object detection in re-
flective geospatial imagery to machine learning, specifically in the case of build-
ings. Results from the application of this method are shown in Figure 16. We
have shown the complex patterns of a discrete object’s contrast features can be
learned using state of the art ML methods. The reduction requires non-trivial
ML-aware preprocessing methods. We have shown that these methods consis-
tently increase the performance of classification algorithms. We also present
the concept of a PHM in order to recover candidates that fail to be classified
correctly. This method generates a search space which has potential to greatly
increase detection rates and requires further research to fully utilize beyond what
is explored in this paper.
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Fig. 16: Some images from Dataset A are analyzed with our machine learning
method using an AdaBoost classifier. Predictions are highlighted in yellow. On
these examples we detect over 90% of the buildings except on heavily clustered
buildings around nuclear power plants which present a difficult task because
candidate building borders abut each other and prevent shadows.
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