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ABSTRACT

Ranking, used extensively online and as a critical tool for decision

making across many domains, may embed unfair bias. Tools to

measure and correct for discriminatory bias are required to ensure

that ranking models do not perpetuate unfair practices. Recently, a

number of error-based criteria have been proposed to assess fairness

with regard to the treatment of protected groups (as determined by

sensitive data attributes, e.g., race, gender, or age). However this has

largely been limited to classiication tasks, and error metrics used

in these approaches are not applicable for ranking. Therefore, in

this work we propose to broaden the scope of fairness assessment

to include error-based fairness criteria for rankings. Our approach

supports three criteria: Rank Equality, Rank Calibration, and Rank

Parity, which cover a broad spectrum of fairness considerations

from proportional group representation to error rate similarity. The

underlying error metrics are formulated to be rank-appropriate,

using pairwise discordance to measure prediction error in a model-

agnostic fashion. Based on this foundation, we then design a fair

auditing mechanism which captures group treatment throughout

the entire ranking, generating in-depth yet nuanced diagnostics.

We demonstrate the eicacy of our error metrics using real-world

scenarios, exposing trade-ofs among fairness criteria and providing

guidance in the selection of fair-ranking algorithms.
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1 INTRODUCTION

As sophisticated machine learning increasingly impacts our lives on

and oline, there is growing concern that discriminatory practices

will be baked into automated decision models [3]. The potential

for harm is vast, highlighting the need for open and transparent

procedures to audit and correct for unfair bias. To address this,
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recent work on algorithmic fairness assesses the treatment of pro-

tected groups by examining the errors made by automated decision

making procedures. The main focus of this prior research has been

on classiication tasks, where predictive models determine a binary

outcome [7, 8, 15, 17, 23, 27, 31]. In our work, we broaden the scope

of error-based fairness assessment to include rankings.

Motivation. Evaluating ranked data is the de facto process used

today for decision making, in particular to make sense of the vast

amount of information available online. Rankings simplify the in-

formation, helping us to make sense of options and limiting the

scope of choices to consider. We rely on ranking models for ev-

eryday tasks such as purchasing products to pivotal life decisions

such as applying to colleges or jobs. Companies rely on rankings

to organize information, whether evaluating candidates to hire [1],

or evaluating potential customers using credit scoring [20].

However, rankings can havemajor pitfalls. Large socio-economic

datasets cannot easily be distilled into simple rankings without ex-

ploiting patterns that exist in the data, including subtle encodings

of historical inequalities. This may lead to unfair decisions, in par-

ticular for regulated domains such as employment, education, and

lending [3]. For instance, Amazon recently revealed a failed attempt

to design a hiring algorithm to screen candidates which they found

inadvertently encoded a gender bias against women [10]. Use of

such a tool risks automating illegal discrimination. Yet, the develop-

ment of ranking algorithms for hiring is widespread [1], while no

systematic approaches to audit these methods are available to date.

Or, consider college rankings published online and used by students

and faculty. Highly ranked colleges often have poor outcomes for

low-income students, such as lower graduation rates or excessive

debt after graduation [29]. The rankings could be considered unfair

for only providing utility to high-income students. Left unchecked,

such harm compounds through the creation of negative feedback

loops. Colleges consistently given a low rank will attract less talent,

decreasing their potential to improve [16, 26]. These institutions

are entrenched in the position determined by the ranking model -

often proprietary and not disclosed.

State-of-the-Art in Fair Ranking. To avoid these kinds of un-

fair and potentially illegal discriminatory practices, mechanisms to

audit ranking models that drive our decision making are essential.

Initial methods for measuring unfairness in rankings have recently

been put forth [5, 28, 30, 32]. However, they target only a single

type of fairness criterion, namely, statistical parity. This criterion re-

quires that members of diferent groups have the same proportional

representation among desirable outcomes, i.e., in a top position in

the ranking. In our hiring example, such a criterion would dictate

that the top candidates in the ranking have a similar proportion of

men and women as in the entire applicant pool.

However, this particular criterion may not be appropriate for

all applications. Alternatively, a rich variety of fairness criteria

available in the literature for classiication are error-based, meaning
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they require that the predictive model make the same łmistakesž

about each group. In our college example, such a criterion might

dictate that colleges not be erroneously ranked lower than their

counterparts solely due to supporting low income students. We

postulate that there is value in considering error-based fairness

criteria for rankings, which to date have not yet been applied.

Challenges. For classiication, error-based deinitions of unfair-

ness are measured by within-class error rates, such as True Positive

Rate, True Negative Rate or probability of assignment to positive

class, for members of diferent groups [17, 23]. However these met-

rics require binary class labels, and cannot be applied to rankings

learned from training data with non-binary labels. Measuring error

made by a ranking model therefore requires metrics appropriate

to the task. Ranking models optimize for diferent types of often

application-speciic error. For instance, in their fair ranking method,

Singh and Joachims [28] deine criteria speciic to online search,

balancing the item exposure in a ranked list of search results with

considerations such as document relevance and click-through rate.

This narrow deinition cannot be directly applied for other ranking

applications such as our college ranking example. Instead, a general

approach to fair error-based ranking is preferable.

Further, notions of fairness for classiication depend on a pre-

ferred outcome determined by membership in the positive class.

Recent methods deine an analogous notion based on the preix

of the ranking. While this approach appears to naturally capture

the preferred rank outcome, focusing only on the top items in a

ranking has severe shortcomings. For many applications, accuracy

throughout the entire ranking matters. If the rank position deter-

mines funding, bottom-ranked institutions could lose resources and

be forced to close. If rankings are used to determine peer groups

for tournament-style competitions, inaccuracies low in the rank-

ing would result in mismatched opponents. In short, accuracy is

important at all positions of the ranking.

Proposed Approach. In this work, we design the irst com-

prehensive auditing methodology for error-based fairness assess-

ment of rankings. In particular, we design analogues for the three

core types of fairness criteria in the literature on fair classiication

[7, 8, 13, 15, 17, 23, 27, 31]. Our proposed criteria, Rank Equality,

Rank Calibration, and Rank Parity, together give a comprehensive

nuanced assessment of group unfairness in rankings. Our analysis

rests on the development of appropriate error metrics for fair rank-

ing. For this, pair inversions, as in foundational rank evaluation

techniques [22], are leveraged as basic building block for measuring

rank errors. This proposed fairness assessment is model-agnostic

and applicable for a wide range of ranking applications.

Further, we propose an auditing mechanism to apply our pro-

posed criteria to measure fairness throughout an entire ranking

instead of only in the top results. Our approach, called FARE (for Fair

Auditing based on Rank Error), uses a sliding window technique

to measure ranges of ranking error and generates error sequences

which capture each group’s treatment throughout the entire rank-

ing. Custom FARE diagnostics provide a nuanced summary of re-

sults, while remaining interpretable to stakeholders who rely on

rankings for decision making.

We evaluate our fairness metrics in a comprehensive experimen-

tal analysis. Using our FARE framework, we evaluate rankings cre-

ated using state-of-the-art fair ranking methods [32] on real-world

datasets [2, 19]. Our analysis identiies strengths and weaknesses of

these existing techniques with regard to fairness. We demonstrate

how our analysis guides the choice of appropriate fair ranking

correction method to apply.

Key contributions of our work include:

(1) We deine a new set of fairness criteria customized for rankings:

Rank Equality, Rank Calibration, and Rank Parity based on novel

rank-speciic error metrics. These criteria are model-agnostic

and applicable for many ranking applications, capturing key

notions of fairness previously applied only for classiication.

(2) We present FARE, the irst comprehensive framework to audit

ranking models using error-based fairness criteria. FARE ofers

a suite of fairness diagnostics for ease of interpretation.

(3) We demonstrate the application of our FARE framework to

assess the capability of state-of-art rank correction methods

to achieve fairness, and illustrate the power of FARE’s diverse

criteria to account for unfair bias in rankings across domains.

2 RELATED WORK

Measuring Fairness in Classiication. No single rule has been

shown to deinitively determine the fairness of an algorithm. The

majority of criteria for evaluating fairness focus on the treatment

of groups determined by some protected data attribute. Error-based

group fairness criterion [7, 17, 23, 27] are concerned with whether

the predictions of a classiier are fair with respect to the group

membership of items in the training dataset. To verify this, fairness

assessment checks whether groups are treated ‘similarly,’ meaning

error rates for each group are within some threshold. It has been

observed that all criteria cannot necessarily be satisied at the same

time [7, 23]. Therefore the appropriate choice of fairness metric is

context-dependent. Group fairness criteria can be categorized as:

• Equalized Odds, coined by Hardt et al. [17], seeks to ensure that

the probability of an object being assigned a particular label by

the classiier is independent of its group membership, conditional

on the true class label [7, 17, 23]. To verify this, Equalized Odds

stipulates that the false positive and true positive error rates must

be similar across all groups.

• Calibration, a group-wise measure of fairness for probabilistic

classiiers, requires that the calibration error for each group is

similar [7, 23, 27]. Calibration error indicates the diference be-

tween the true likelihood of membership in the positive class

and the probability given by the classiier. For example, if there

are 100 objects assigned a 90% chance of being in the positive

class by the classiier, approximately 90 of these objects should

actually be positive.

• Statistical Parity requires proportional representation of each

group [8, 15, 31]. This is similar in spirit to the 80% rule for eval-

uating disparate impact in judicial rulings [15] and airmative

action quotas employed by many institutions. Typically the de-

sired outcome is that some minimal proportion of minority group

members are predicted as positive.

Measuring Fairness in Rankings. Recent work has begun to

address group fairness concerns in rankings [5, 28, 30, 32]. Most

works [5, 30, 32] focus on enforcing only Statistical Parity criterion,

and detect unfairness only in the top-k preix of a ranking. Criteria
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based on prediction error have not yet been applied for fair ranking

to our best knowledge.

Yang and Stoyanovich [30] measure fairness according to a dis-

counted cumulative scoring metric that evaluates the proportional

representation of groups. In [5] fairness is deined according to a

threshold on the maximum proportion of the majority group al-

lowed in the preix. Zehlike et al. [32] extend these statistical parity

approaches, designing a greedy algorithm to ensure the ranking

meets the criterion while optimizing for utility. Singh and Joachims

target fair ranking in information retrieval speciically [28]. Metrics

favoring accuracy at the top of the ranking are well-suited here

since, out of possibly thousands of documents returned for a query,

only a few top results are likely to be clicked. While they broaden

their fairness deinitions beyond statistical parity, metrics proposed

in [28] are application-speciic, deining fairness in terms of item

exposure to users, clickthrough rates, and document relevance.

3 FAIR RANKING PROBLEM FORMULATION

Ranking can have diferent meanings in diferent contexts, and

ranking models can be trained over various types of ground truth

information. Rank predictions can be learned from training data

with binary labels (e.g., in bipartite ranking [9]) or discrete labels

with ordered classes (i.e., ordinal regression [18] with labels such as

łbestž, łneutralž, łworstž). Traditional regression ranks according

to continuous scoring functions. Learning-to-rank approaches also

include pairwise and listwise models [25].

Therefore, to be widely applicable, we target general rankings

with amodel-agnostic approach.We assume only that an ordering is

imposed over a set of objects X according to some function which

assigns each xi ∈ X a position relative to all others. Following

previous work on error-based criteria for fair classiication [7, 8, 13,

15, 17, 23, 27, 31], we formulate the task of auditing the fairness of

a ranking as a supervised learning problem in that the true ranking

overX is known. 1 Unique to the context of fairness analysis, objects

have an associated protected attribute, such as gender, age, or race,

which partitions the objects into a set of two or more disjoint groups

A = {A1, . . . ,Am | ∪mi=1 Ai = X ,Ai ∩Aj = ∅,∀i , j}. We consider

only a single protected attribute, leaving intersectional fairness

considerations with multiple protected attributes to future work.

Let ρ = [x1 ≻ x2 ≻ ... ≻ xn ] be the true ranking over all objects

xi ∈ X , where ≻ is an ordering relation on X such that xi ≻ x j
implies that xi appears at a more preferred position in the ranking

than x j . The number of items in the set is denoted by |X | = n. The

position of a single object xi in the true ranking is denoted ρ(xi ).

Our task is to evaluate a learned ranking ρ̂ according to a given

Fairness Criterion which relies on a group error function L.

Definition 1. Given a group error metric LAi (ρ, ρ̂), a

Fairness Criterion (FC) is an evaluation rule which designates a

ranking ρ̂ as fair in relation to a true ranking ρ if:

LAi (ρ, ρ̂) � LAj
(ρ, ρ̂) , ∀Ai ,Aj ∈ A, i , j

Fairness is evaluated by checking whether the error for each

group is similar, or within some threshold, indicated by the symbol

�. The larger the diference in the errors for each group, the more

1While a łtruly fairž ground truth ranking may not be available, this assumption allows
us to distinguish whether a proposed ranking is more or less fair than an alternative.

All Pairs in ρ̂

Concordant Discordant

c1 ≻ c2 c4 ≻ c2
c1 ≻ c3 c4 ≻ c3
c1 ≻ c4
c2 ≻ c3

Figure 1: On the left is a true ranking of colleges ρ and pre-

dicted ranking ρ̂ over two groups of colleges. The resulting

discordant and concordant pairs are shown on the right.

unfair the ranking is considered to be. Our assessment therefore

hinges on the choice of a rank-appropriate group error function L.

4 PROPOSED ERRORMETRICS FOR RANK FC

4.1 Pairwise Comparison of Group Errors

To design a general approach for evaluating group error in rankings,

we consider foundational approaches [11]. One classic method is

to sum the absolute diference in rank position between the true

and predicted rankings for each object in the dataset (i.e., to use

the Spearman footrule distance). Another popular methodology

uses the pairwise error, or Kendall Tau distance [22], by counting

the number of inverted pairs of objects in the predicted ranking

compared to the true ranking. These two classic approaches to mea-

suring rank similarity have been shown to be equivalent, meaning

the Kendall Tau is always within a constant factor of the Spear-

man footrule distance [12, 24]. Given this insight, the two metrics

have been used interchangeably for tasks such as rank aggregation

[14, 24]. For fairness assessment, the same reasoning applies in that

either rank error metric could be applied. However, since we are

concerned with the comparative ranking outcomes for diferent

groups, the pairwise approach provides a natural formulation.

Given the position in the true ranking of a pair of objects where

ρ(xi ) ≻ ρ(x j ), they are said to be discordant if ρ̂(xi ) ≺ ρ̂(x j ). Fig-

ure 1 shows the sets of concordant and discordant pairs resulting

from an error between two rankings of colleges. We observe that

a ranking containing objects from two diferent groups, Ai and

Aj , can be divided into three subsets of pairs: those containing

only objects from group Ai , those containing only objects from

Aj , and the set of łmixedž pairs containing one object from each

group. The total number of unordered pairs in a ranking over X is

ϕ(X ) = |X |(|X | − 1)/2. The cardinality of the set of mixed pairs is

ϕ(X ) − ϕ(Ai ) − ϕ(Aj ). We denote the number of discordant pairs

in a set X as ϕD (X ) and concordant pairs as ϕC (X ). The number

of mixed pairs favoring objects from one group Ai over another

group Aj is denoted by ϕi≻j (X ). For instance, the cardinality of the

set of discordant pairs favoring Ai over Aj is indicated as ϕDi≻j (X ).

For simplicity, we henceforth consider two groups. However,

rank error based on discordant pairs can easily be extended to

multiple groups. For instance, to compute the number of discordant

pairs favoring groupA1 givenm groups, we compute
∑m
i=2 ϕ

D
1≻i (X ).
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4.2 Proposed Rank Equality Criterion

The Equalized Odds criterion for classiication measures fairness

in terms of the rate at which groups are falsely assigned to the pre-

ferred or non-preferred classes. When evaluating a ranking, there

are no binary assignments by which to gauge preference. How-

ever, position in a ranking does indicate a preferred or undesirable

outcome - the top of the ranking being analogous to the positive

class. When an object is overestimated by the model it is incorrectly

assigned a more preferred position than in the true ranking. This

is similar in efect to a false positive error made by a classiier. Ac-

cordingly, underestimating the position of an object in the ranking

incorrectly penalizes it, as in a false negative. Following this prin-

ciple, we compute the Rank Equality error for group Ai in terms

of the number of discordant pairs which favor Ai over items from

another group Aj . This proposed metric (Deinition 2) captures the

number of times that an object from group Ai is incorrectly overes-

timated compared to objects in Aj . The error is then normalized by

the total number of mixed pairs ensuring that the error falls in a

range of [0, 1]. Normalization creates an interpretable measure of

preference and accounts for any imbalance in the size of the groups.

To apply the Rank Equality FC, we simply compare the Req error

for each group.

Definition 2. Rank Equality Error

ReqAi (ρ, ρ̂) =
ϕDi≻j (X )

ϕ(X ) − ϕ(Ai ) − ϕ(Aj )

where ϕDi≻j (X ) denotes the number of discordant pairs which favor

the target group Ai over Aj , i , j.

Rank Equality dictates that no group should be unfairly privi-

leged or penalized compared to another group. As an example, con-

sider the rankings shown in Figure 1. To compute the Rank Equal-

ity error for group A2, we count the number of discordant pairs

where an item from A2 is favored over an item from A1. Four pairs

contain an object from each group: (c1, c2), (c1, c4), (c2, c3), (c3, c4).

One of these pairs (c3, c4) is discordant, since ρ̂(c4) ≻ ρ̂(c3) and

ρ(c3) ≻ ρ(c4), and favors A2. Thus ReqA2
(ρ, ρ̂) = 1

4 .

4.3 Proposed Rank Calibration Criterion

Calibration is used to evaluate probabilistic classiiers in terms

of the conidence of the model, using the mean squared error

between predicted likelihood of assignment in the positive class

and an estimated łtruež probability [4]. Applied as an FC, this

criterion checks how well the classiier predicts objects in each

group. To evaluate the calibration of a ranking ρ̂ for a group Ai ,

we propose to measure error in predicted rank position by count-

ing the number of discordant pairs which contain at least one

member of Ai , as given in Deinition 3. This captures the over-

all error made for items in the group. The value is normalized by

the total number of pairs containing objects from Ai . For exam-

ple, the pairs containing objects from group A2 in Figure 1 are

(c1, c2), (c1, c4), (c2, c3), (c2, c4), (c3, c4). Pairs (c2, c4) and (c3, c4) are

both discordant, therefore following Deinition 3, the rank calibra-

tion error is RcalA2
(ρ, ρ̂) = 2

5 .

Definition 3. Rank Calibration Error

Rcal Ai (ρ, ρ̂) =
ϕDi (X )

ϕ(X ) − ϕ(Aj )

Where ϕDi (X ) denotes the number of discordant pairs containing at

least one object from the target group Ai .

4.4 Proposed Rank Parity Criterion

Finally, we also apply pair inversion to design a statistical parity

metric like those explored in previous work on fair ranking [5,

30, 32]. Here, the goal is to ensure fair representation of members

of each group among objects given a favorable rank position. We

propose to capture this idea by counting the pairs in which one

group is favored over the other in the learned ranking, regardless

of their positions in the true ranking. We again normalize by the

total number of mixed pairs in the learned ranking.

Definition 4. Rank Parity Error

RparAi (ρ, ρ̂) =
ϕi≻j (X )

ϕ(X ) − ϕ(Ai ) − ϕ(Aj )

Whereϕi≻j (X ) is the number of pairs of objects which favor a member

of group Ai over a member of Aj , i , j.

In Figure 1, two pairs in ρ̂ favor group A2 over group A1: (c2, c3)

and (c4, c3). Therefore,RparA2
(ρ, ρ̂) = 2

4 . Thismatches our intuition

of parity, since the groups are still somewhat evenly distributed

through the ranking ρ̂ in spite of the incorrect placement of c4.

4.5 Discussion: Ranking Criteria and Their
Interrelationships

We now analyze our metrics to understand their interrelationships

and scope of applicability. Given a ranking ρ̂ over д groups, there

are д2 ways of choosing two objects from the ranking, allowing for

group repetition. These pairs may be either concordant or discordant,

resulting in 2д2 types of pairs. Table 1 shows the categories of

pairs that can be formed for д = 2 groups. The colors in the table

correspond to the colors in the Venn diagram in Figure 2, illustrating

the relationship between the types of pairs used to compute errors

for a single group, A1.

Since our fairness analysis is concerned with the relative error

made for each group, within-group concordant pairs are not con-

sidered when computing error metrics. All other types of pairs are

included in the deinition of at least one error metric. Discordant

mixed pairs are used to compute all three error metrics. These pairs

of objects intuitively capture the major disparity between groups:

cases where one group is erroneously favored over the other. We

deine this as Rank Equality. Rank Calibration instead measures

the total error for each group. This metric counts all pairs contain-

ing objects from a single group, capturing within-group as well as

across-group errors. Finally, Rank Parity considers the total advan-

tage of one group over the other.

FC are compatible in extreme cases. In a perfect prediction there

is no error between ρ̂ and ρ. In this case Req = Rcal = 0 for all

groups, since no pairs are discordant. The corresponding FC deem ρ̂

fair since the group errors are identical. The Rpar error in this case

will simply measure the relative advantage of each group in the

true ranking. It may be considered fair or unfair depending on the



FARE: Diagnostics for Fair Ranking using Pairwise Error Metrics WWW ’19, May 13–17, 2019, San Francisco, CA, USA

Figure 2: Relationship between the types of pairs used to

compute the error for group A1 (corresponding to Table 1).

distribution of the objects in each group. Since this is independent

of the other metrics, it is therefore possible for a perfect prediction

to satisfy all three criteria. In the worst case, ρ̂ ranks the objects

in the reverse order from ρ. In this case Rcal = 1 since all pairs are

discordant. Each group is predicted with the same amount of error,

therefore by the Rank Calibration FC, ρ̂ is considered fair. In this

case no pairs are concordant, therefore Req = Rpar . Whether the

ranking is considered fair according to the corresponding FC again

depends on the distribution of groups throughout the ranking.

5 FAIR AUDITING BASED ON RANK ERROR

The FARE Methodology. We next design a non-parametric ap-

proach to assess rankings using our proposed error metrics. We

want to understand the entire ranking of items from the preferred

positions at top of the ranking to the lowest ranked objects. Ag-

gregating the entire treatment of each group using a single fair-

ness score provides only a coarse assessment. Therefore our FARE

methodology (for Fair Auditing based on Rank Error) generates

sequences of within-range errors for each group. The diferences in

these sequences tell a richer story than would a single value for

each group, revealing disparity throughout the entire ranking.

To start, FARE sorts the data according to the predicted ordering

ρ̂ and bins it into k subsets ⟨B1,B2, . . . Bk ⟩. Error metrics are then

applied to the objects in each bin. In the case of two groups A1 and

A2 we evaluate errors l1i = LA1
(βi , β̂i ) and l2i = LA2

(βi , β̂i ) for

the data in each bin Bi . This produces two error sequences: S1 =

⟨l11, l12, . . . l1k ⟩ and S2 = ⟨l21, l22, . . . l2k ⟩. An equi-width binning

strategy compares the top-k ranked items across both groups in

the irst bin, the next k in the next bin, and so on. An equi-depth

strategy is also possible, where each bin measures how well the

ranking predicts
|Ai |
k

% of items from each group.

If the number of binsk is so large that there are only a few objects

in each, then the sequence of error measurements may exhibit a

high degree of variance. This could exaggerate diferences between

groups in the case where one is a minority. On the other hand, if

bins contain many objects, the result is a rather coarse estimate.

To capture the error at a suicient number of positions through-

out the ranking while achieving a reasonable bin size, we adopt a

sliding window approach. This introduces a smoothing transforma-

tion over the data to account for high variance across bins. Each

consecutive bin of size w overlaps the previous, ofset by a ixed

step size s < w . The irst bin B1 contains objects {x1,x2, ..,xw },

ordered according to their predicted positions ρ̂(xi ), the second

bin B2 = {xs+1,xs+2, . . . xs+w }, and so on. Each error sequence Si

contains ⌊
|Ai |
s ⌋ bins.

Discordant Concordant

A1 ≻ A1
D A1 ≻ A1

C

A2 ≻ A2
D A2 ≻ A2

C

A1 ≻ A2
D A1 ≻ A2

C

A2 ≻ A1
D A2 ≻ A1

C

Table 1: Categorization of pairs in ρ̂ over two groups A1,A2.

Diagnostics for Analyzing Fairness. The next step in the au-

diting procedure is to compare the error sequences S1 and S2 pro-

duced by our FARE framework to see if they are similar, and there-

fore meet the fairness criterion, or if they difer in ways which

indicate an unfair ranking. To facilitate this, FARE ofers audit plots.

Similar to reliability diagrams for assessing the calibration of clas-

siiers [4], these visual depictions reveal diferences in the shapes,

patterns and values of the error sequences. Since our proposed

error metrics are normalized, the y-axis on each plot has a ixed

range of [0, 1], providing an easily interpretable snapshot view of

the error sequences generated during the audit process.

Audit plots are augmented by compact statistics, or fairness scores,

indicating whether the rankingmodel satisies the FC. Conceptually,

any diagnostic metrics comparing the sequences can be plugged

into the framework. We employ a distance diagnostic dist(S1, S2) =
1
k

∑k
i=1 |l1i − l2i | to summarize the similarity of the error sequences

as a single value. These scores can be thresholded to lag unfair

cases where the average magnitude of error for one group is much

larger than the other or to apply strict FC cutofs.

Complexity. A simple pair counting algorithm can be used to

compute each of our proposed error metrics in O(nloд(n)) time

using an adaptation of the mergesort algorithm. Performing an

audit using the FARE methodology can therefore also be done in

logarithmic time, requiringO(n/s(wloд(w)) time for step size s and

window size w to compute the error sequences for each group.

In cases where performance is an issue, we can improve the pair

counting procedure to run in O(n
√

loд(n)) time [6].

6 EXPERIMENTAL EVALUATION: AUDITING
RANK CORRECTION METHODS

We demonstrate the power of our proposed error metrics using

FARE to audit post-processing techniques from the literature de-

signed to correct existing rankings. Two state-of-the-art fair rank-

ing methods which enforce statistical parity notions of fairness are

compared. Using the FARE methodology, we reveal the resulting

tradeofs between this criterion and the prediction error introduced.

We evaluate these fair ranking algorithms using FARE audit plots

(Figure 3) and FARE distance diagnostics (Table 2).

State-of-Art FairCorrectionMethods.We reproduce a subset

of experiments presented by Zehlike et al. [32] using implementa-

tion and data made available by the authors.łFA*IRž rankings are

generated using a greedy algorithm proposed in [32] to create a fair

top-k preix ranking. The rankings target a user-speciied minimum

proportion of the minority group, subject to a statistical signiicance

test. The proportion is indicated in the method name, e.g., FA*IR2

for 20%. Here we use the same proportions as the authors, chosen

to be close to the actual group ratio over the entire dataset.
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The łFeldmanž method [15] is proposed as pre-processing step

for fair classiication in which data are ranked. In this method the

utility scores for objects in the minority group are adjusted to match

the distribution of the majority. We compare these rankings against

a baseline of the true ranking with no correction.

Datasets.We evaluate the rank correction methods using two

datasets. The Statlog GermanCredit Dataset [19] provides a łground

truthž ranking of people according to their credit-worthiness for

our experiments. Three łfairž rankings are then created using age

< 25, age < 35 and gender = female as protected group attributes.

Preix rankings with k = 100 are generated. Audit parameters for

this dataset are w = 30, s = 10. The COMPAS recidivism dataset

published by ProPublica in their investigation of racial bias in the

criminal justice system is also utilized [2]. This dataset is ranked ac-

cording to COMPAS scores indicating the likelihood of re-ofending

for the łtruež ranking with k = 1000. łFairž rankings are generated

according to groups race = African American and gender = male.

Audit parameters arew = 100, s = 10.

Metrics. We produce audit plots using our proposed metrics

Req,Rcal and Rpar , and summarize the results using FARE distance

diagnostics. In their experiments, Zehlike et al. [32] use a number

of metrics to gauge the tradeof between parity and prediction ac-

curacy. We include two metrics for comparison: NDCG: normalized

discounted cumulative gain [21] (commonly used in search), and

rank drop: the maximum number of positions lost by an object.

Discussion. Table 2 summarizes the FARE diagnostics for our

experiments. The rankings deemed most fair in this audit are high-

lighted in bold. Asterisks mark the conclusions which align with

the analysis in [32]. For three out of ive rankings FA*IR clearly

outperforms Feldman, satisfying multiple fairness concerns.

The impact of both the FA*IR and Feldman rank correction tech-

niques on statistical parity concerns is apparent, as measured by

our Rank Parity FC. For instance, for the German Credit dataset

using age < 25, Rpar distance is 0.25 in the baseline łtruež rank-

ing. Both methods are able to reduce this to 0.03. The degree to

which error is introduced as a result of the correction algorithm

is relected in the Req and Rpar scores. By comparison, the NDCG

metric is not sensitive to the rank correction methods, and therefore

not expressive enough to capture unfairness. The rank drop values

tend to align with the FARE diagnostics. However, this value is not

very interpretable. We cannot observe which group had the farthest

drop, or whether the position of many items dropped.

For such nuanced analysis we turn to our FARE audit plots,

shown in Figure 3. For the German Credit dataset, we can visually

discern that both FA*IR and Feldman systematically introduce Req

and Rcal errors that indicate an unfair disparity in the treatment

of the groups throughout the ranking. For the COMPAS dataset,

we observe similar patterns and magnitude of error throughout the

rankings for both groups. In this case, the correction methods are

introducing error in a fair manner. Feldman shows a drop midway

through the Rcal sequence while the FA*IR error appears more

consistent. FARE compliments the use of these ranking methods

by providing this in-depth view of the treatment of each group.

In the interest of reproducibility, all code, data, and a full analy-

sis including additional diagnostics and datasets is available online:

Examples and analysis: https://github.com/caitlinkuhlman/fare

FARE python package: https://pypi.org/project/fare
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COMPAS, race = Afr. Amer.
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Figure 3: Audit plots for rank correction methods illustrate

how errors (plotted on the y-axis and normalized between 0

and 1), manifest throughout the ranking. The x-axis repre-

sents the sliding window moving from highly ranked items

on the left to the lowest on the right. Errors for groupA1 are

shown as a solid black line, group A2 as dashed red line.

FARE

Dataset Group Method Rpar Rcal Req NDCG Drop

German

Credit

k=100

age< 25

Baseline 0.25 0.00 0.00 1.00 0

Feldman 0.03 0.23 0.33 1.00 8

FA*IR2 0.03* 0.18 0.27 1.00 7

German

Credit

k=100

age< 35

Baseline 0.17 0.00 0.00 1.00 0

Feldman 0.04 0.06 0.26 0.99 36

FA*IR6 0.04 0.04 0.40 0.99 30

German

Credit

k=100

gen=f

Baseline 0.33 0.00 0.00 1.00 0

Feldman 0.05 0.10 0.27 1.00 8

FA*IR7 0.08 0.11 0.28 1.00 0

COMPAS

k=1000
race

Baseline 0.09 0.00 0.00 1.00 0

Feldman 0.08 0.01 0.08 0.98 393

FA*IR5 0.02* 0.01 0.04 0.99 319

COMPAS

k=1000
gen=m

Baseline 0.13 0.00 0.00 1.00 0

Feldman 0.09 0.03 0.09 1.00 294

FA*IR8 0.02* 0.01 0.03 1.00 161

Table 2: Fairness evaluation for rank correction methods.

FARE distance diagnostics are shown in the center, and com-

pared to standard error metrics.

7 CONCLUSION

In this work we present the irst methodology for auditing rankings

using group error metrics which capture popular notions of fairness.

Our proposed fairness criteria together with our FARE auditing

method comprise a powerful diagnostic tool for nuanced analysis

of the treatment of groups being ranked. FARE can be applied in a

general and model-agnostic fashion, for many applications where

rankings are used to simplify complex socio-economic datasets,

providing a crucial service of debunking unfair rankings.

ACKNOWLEDGMENTS

The authors thank the Computing Resources Association forWomen

for support through the CREU program. This work was also par-

tially funded by NSF IIS-1815866, IIS-1560229, IIS-1815866 and US

Department of Education GAANN Fellowship P200A150306.

https://github.com/caitlinkuhlman/fare
https://pypi.org/project/fare


FARE: Diagnostics for Fair Ranking using Pairwise Error Metrics WWW ’19, May 13–17, 2019, San Francisco, CA, USA

REFERENCES
[1] Ifeoma Ajunwa, Sorelle Friedler, Carlos E Scheidegger, and Suresh Venkatasubra-

manian. 2016. Hiring by algorithm: predicting and preventing disparate impact.
(2016).

[2] Julia Angwin, Jef Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine bias.
Pro Publica (2016).

[3] Solon Barocas and Andrew D Selbst. 2016. Big data’s disparate impact. Cal. L.
Rev. 104 (2016), 671.

[4] Rich Caruana and Alexandru Niculescu-Mizil. 2004. Data mining in metric space:
an empirical analysis of supervised learning performance criteria. In Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 69ś78.

[5] L Elisa Celis, Damian Straszak, and Nisheeth K Vishnoi. 2017. Ranking with
fairness constraints. arXiv preprint arXiv:1704.06840 (2017).

[6] Timothy M Chan and Mihai Pătraşcu. 2010. Counting inversions, oline orthogo-
nal range counting, and related problems. In Proceedings of the twenty-irst annual
ACM-SIAM symposium on Discrete Algorithms. Society for Industrial and Applied
Mathematics, 161ś173.

[7] Alexandra Chouldechova. 2017. Fair prediction with disparate impact: A study
of bias in recidivism prediction instruments. Big data 5, 2 (2017), 153ś163.

[8] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. 2017.
Algorithmic decision making and the cost of fairness. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 797ś806.

[9] Corinna Cortes and Mehryar Mohri. 2004. AUC optimization vs. error rate
minimization. In Advances in neural information processing systems. 313ś320.

[10] Jefrey Dastin. 2018. Amazon scraps secret AI recruiting tool that showed bias
against women. Reuters (2018). https://www.reuters.com/article/us-amazon-
com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-
showed-bias-against-women-idUSKCN1MK08G

[11] Persi Diaconis. 1988. Group representations in probability and statistics. Lecture
Notes-Monograph Series 11 (1988), iś192.

[12] Persi Diaconis and Ronald L Graham. 1977. Spearman’s footrule as a measure of
disarray. Journal of the Royal Statistical Society. Series B (Methodological) (1977),
262ś268.

[13] Cynthia Dwork, Nicole Immorlica, Adam Tauman Kalai, and Mark DM Leiserson.
2018. Decoupled Classiiers for Group-Fair and Eicient Machine Learning. In
Conference on Fairness, Accountability and Transparency. 119ś133.

[14] Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. 2001. Rank
aggregation methods for the web. In Proceedings of the 10th International Confer-
ence on World Wide Web. ACM, 613ś622.

[15] Michael Feldman, Sorelle A Friedler, JohnMoeller, Carlos Scheidegger, and Suresh
Venkatasubramanian. 2015. Certifying and removing disparate impact. In Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 259ś268.

[16] Malcolm Gladwell. 2011. The order of things. The New Yorker 87, 1 (2011), 68ś75.
[17] Moritz Hardt, Eric Price, Nati Srebro, et al. 2016. Equality of opportunity in

supervised learning. In Advances in Neural Information Processing Systems. 3315ś
3323.

[18] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. 1999. Support vector learn-
ing for ordinal regression. (1999).

[19] PDH Hofmann. 1994. Statlog (German Credit Data) Data Set. UCI Repository of
Machine Learning Databases (1994).

[20] Mikella Hurley and Julius Adebayo. 2016. Credit scoring in the era of big data.
Yale JL & Tech. 18 (2016), 148.

[21] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422ś446.

[22] Maurice G Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2
(1938), 81ś93.

[23] Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2017. Inherent
Trade-Ofs in the Fair Determination of Risk Scores. In Proceedings of the 8th
Conference on Innovation in Theoretical Computer Science.

[24] Ravi Kumar and Sergei Vassilvitskii. 2010. Generalized distances between rank-
ings. In Proceedings of the 19th International Conference on World Wide Web. ACM,
571ś580.

[25] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and
Trends® in Information Retrieval 3, 3 (2009), 225ś331.

[26] Cathy O’Neil. 2017.Weapons of math destruction: How big data increases inequality
and threatens democracy. Broadway Books.

[27] Geof Pleiss, Manish Raghavan, FelixWu, Jon Kleinberg, and Kilian QWeinberger.
2017. On fairness and calibration. In Advances in Neural Information Processing
Systems. 5680ś5689.

[28] Ashudeep Singh and Thorsten Joachims. 2018. Fairness of Exposure in Rankings.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2219ś2228.

[29] Annie Waldman and SiSi Wei. 2015. Colleges Flush With Cash Saddle Poorest
Students With Debt. Pro Publica (2015).

[30] Ke Yang and Julia Stoyanovich. 2017. Measuring fairness in ranked outputs.
In Proceedings of the 29th International Conference on Scientiic and Statistical
Database Management. ACM, 22.

[31] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P
Gummadi. 2017. Fairness beyond disparate treatment & disparate impact: Learn-
ing classiication without disparate mistreatment. In Proceedings of the 26th
International Conference on World Wide Web. ACM, 1171ś1180.

[32] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Mega-
hed, and Ricardo Baeza-Yates. 2017. Fa* ir: A fair top-k ranking algorithm. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-
agement. ACM, 1569ś1578.

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

	Abstract
	1 Introduction
	2 Related Work
	3 Fair Ranking Problem Formulation
	4 Proposed Error Metrics for Rank FC
	4.1 Pairwise Comparison of Group Errors
	4.2 Proposed Rank Equality Criterion
	4.3 Proposed Rank Calibration Criterion
	4.4 Proposed Rank Parity Criterion
	4.5 Discussion: Ranking Criteria and Their Interrelationships

	5 Fair Auditing based on Rank Error
	6 Experimental Evaluation: Auditing Rank Correction Methods
	7 Conclusion
	Acknowledgments
	References

