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Abstract. k-nearest neighbor (kNN) search is a fundamental data mining task
critical to many data analytics methods. Yet no effective techniques to date scale
kNN search to large datasets. In this work we present PkNN, an exact distributed
method that by leveraging modern distributed architectures for the first time scales
kNN search to billion point datasets. The key to the PkNN strategy is a multi-
round kNN search that exploits pivot-based data partitioning at each stage. This
includes an outlier-driven partition adjustment mechanism that effectively min-
imizes data duplication and achieves a balanced workload across the compute
cluster. Aggressive data-driven bounds along with a tiered support assignment
strategy ensure correctness while limiting computation costs. Our experimental
study on multi-dimensional real-world data demonstrates that PkNN achieves sig-
nificant speedup over the state-of-the-art and scales effectively in data cardinality.
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1 Introduction

Detecting the nearest neighbors of all points in a dataset is a ubiquitous task common to
numerous data mining endeavors. Many techniques, including classification and regres-
sion [7], clustering [3, 10], and outlier detection [4, 20], require a k-nearest neighbor
(kNN) search to be performed for every point in the dataset. As real-world applications
increasingly rely on the analysis of very large datasets, they require resources beyond
what is feasible on a single machine. Therefore, the development of highly distributed
solutions for kNN search is no longer an option, but a necessity.

Several distributed exact kNN search methods have been proposed in the literature
[5, 15, 24], using a support set strategy. First, the data is divided into disjoint partitions
by grouping nearby points together. Then these core partitions are each augmented by
additional sets of support points which could potentially be neighbors of the points in
the core partition. The support sets ensure that a local kNN search over core points will
return exact results without requiring access to data stored on any other machines.

Although this approach successfully distributes kNN computation across machines,
existing methods are not scalable beyond million point datasets, as confirmed by our
experiments (Sec. 5). Major shortcomings include the use of worst-case estimation for
support sets [15] leading to excessive data duplication, or computationally intensive
support determination leading to excessive runtimes [5]. Worse yet, the outlier problem



Fig. 1: kNN partitioning problem.

in skewed data sets has largely been overlooked. Data points far from all others can
disproportionately inflate support sets and overload machines, resulting in job failures.
Challenges. A key property of kNN search is that the distance from each point to its
neighbors may vary considerably across a dataset. The distance tends to be small in
dense areas, while very large for points in sparse areas, as illustrated in Figure 1. There-
fore the distance from points to potential neighbors in the support set varies greatly
across partitions. To locate the exact set of all necessary support points for each parti-
tion a priori would essentially require a kNN search be conducted even before the data
partitioning is formed. Alternatively, if the distance to support points is estimated given
only limited information about the data distribution, it must be very conservative to
ensure correctness. Unfortunately, this inevitably leads to prohibitively high data dupli-
cation as shown above. Designing a strategy that safely bounds the support set for each
partition while introducing minimum data duplication thus represents an open problem.

Second, load balancing across the partitions is critical, since a single long-running
analytics task will determine the response time of the entire job. Furthermore, if the
workload assigned to one machine exceeds its accommodation capacity, it will cause
job failures. In distributed kNN search, the workload of each machine is determined
not only by the cardinality of each core data partition, but also the size of its associated
support set. The strongly interdependent nature of the partitioning and support point es-
timation problems complicates load balancing. On the one hand, to ensure load balance
the partitioning has to take the support points into consideration. On the other hand, the
support points required for a partition are determined by the distribution of data within.
This raises the proverbial chicken and egg problem.
Proposed Approach. In this work we propose a distributed method that for the first
time scales exact kNN search to billion point datasets. Our approach fully exploits a
pivot-based partitioning strategy, so called Pivot-Based kNN Search (PkNN).

PkNN overturns the common understanding that a distributed analytics task should
be completed in as few rounds as possible. We show that decomposing the kNN search
into multiple rounds reveals opportunities to solve the problems of generating balanced
partitions and accurately predicting support points. The rich knowledge learned in the
kNN search itself can be fully explored to derive a data-driven bound on the support set
much tighter than bounds based on worst-case estimation. In particular PkNN features
a multi-granularity pruning strategy to accurately yet efficiently locate support points.
By leveraging the learned knowledge it is able to identify and prune the set of par-
titions that cannot possibly contain any support points. Then at a finer individual data



point granularity it introduces the concept of a boundary hyperplane to quickly discover
support points based on their position relative to the hyperplane.

The support set bound and learned knowledge together are then leveraged to dynam-
ically adjust the imperfect initial partitioning to ensure load balancing for the next round
of kNN search. Our key observation here is that severe load imbalance is caused by a
few far-located points in the dataset, so called outliers. By dynamically re-distributing
these points, our outlier-driven partition adjustment mechanism ensures that no parti-
tion will overwhelm the resources of its assigned machine. Furthermore, it is shown to
tighten the support point bound – minimizing data duplication to a rate close to 1.
Contributions. The key contributions include:

1. We present PkNN, the first distributed solution that scales kNN search to billion
point datasets.

2. Our multiple round kNN search strategy successfully minimizes the data duplica-
tion rate and balances the workload across different machines.

3. Our outlier-driven partition adjustment strategy overcomes the outlier problem in
kNN search, adapting partitioning to the data distribution and available computing
resources of each machine.

4. Experimental evaluation on large real-world datasets shows that PkNN significantly
outperforms the state-of-the-art in data duplication rate and runtime.

2 Problem Statement

Here we formalize the distributed kNN search problem. Frequently used symbols are
listed in Table 1. Given a multi-dimensional dataset D, the task is to find for each point
p in D a set of k other points which are most similar to p. We assume this similarity
measure to be a well defined distance metric |·| such as any Lp norm.

Definition 1. kNN Search. ∀ points p ∈ D, find the set of points kNN(p) where
kNN(p) = {q1, q2, ..., qk ∈ D | ∀r ∈ D \ kNN(p), |p, qi| ≤ |p, r|, r 6= p}.

The naı̈ve solution for centralized kNN search is to simply compare each point with
every other point in the dataset and choose the k closest. This requires access to all
points in the dataset, i.e. it is quadratic. For today’s huge datasets, the time to complete
this exhaustive search is prohibitive, and furthermore, the data may be too large to be
accommodated on a single machine. Therefore the kNN search task must be completed
in a distributed fashion without local access to the entire dataset. We target shared-
nothing platforms such as Hadoop [22] and Spark [25] where unrestricted pairwise
exchange of data is not allowed between machines. Therefore our goal is to complete
the kNN search autonomously for the portion of the dataset processed on each machine.
To meet stringent response time requirements of big data applications, this distributed
approach must effectively minimize end-to-end execution time.

Definition 2. Distributed kNN Search. Given a dataset D stored across n machines
in a distributed compute infrastructure, perform kNN Search by processing n subsets
(called cells) Ci such that C1 ∪ C2 ∪ ... ∪ Cn = D on separate machines indepen-
dently in parallel while minimizing end-to-end execution time.



Symbol Definition
kNN(p) The k nearest neighbors of point p
Vi Voronoi Cell
vi Pivot corresponding to Vi

Vi.core Core points of a Voronoi cell {p ∈ D | |p, vi| ≤ |p, vj | i 6= j}
Vi.support Support set of Voronoi cell Vi

core-dist(Vi) max(|p, q|) ∀p, q ∈ Vi.core q ∈ kNN(p) ∈ Vi.core
Hij Hyperplane boundary between Voronoi cells Vi and Vj

hp-dist(q, Vi) The distance from a point q ∈ Vj to Hij

support-dist(Vi) max(|p, vi|+ |p, q|) ∀p, q ∈ Vi.core q ∈ kNN(p) ∈ Vi.core
Table 1: Table of Symbols

2.1 Data Partitioning

Data partitioning is the first step of any distributed analytics task. If data is distributed
among machines randomly, then it is likely that the neighbors of a given point will be
sent to a different machine. Therefore a data partitioning strategy which preserves data
proximity is desired. Here we adopt pivot-based data partitioning. First a small set of
n initial points, or pivots, is chosen and then all data points are grouped based on their
distances to the pivots. The result is a data partitioning known as a Voronoi Diagram
which determines a unique division of the metric space into Voronoi cells.

Definition 3. Voronoi Cell. Given a datasetD and set of n pivotsP = {v1, v2, . . . , vn}
we have n corresponding Voronoi cells {Vi | V1 ∪V2 ∪ ...∪Vn = D,Vi ∩Vj = ∅} and
∀p ∈ Vi, distance(p, vi) ≤ distance(p, vj), i 6= j.

Although pivot-based partitioning preserves the locality of the data, for points that
lie along the boundaries of cells, their neighbors may still be sent to other machines.
The use of a support set for each data partition ensures that the neighbors of all points
in a partition can be found locally. Each cell is augmented by additional points which
may be neighbors of those points near the boundary of the cell [5, 15, 24]. The points
inside each cell Ci are denoted as Ci .core = {p | p ∈ Ci}. The support set of the cell,
denoted Ci.support, must be sufficient to guarantee that the kNN of all core points in
each cell Ci can be found among Ci.core and Ci.support.

Definition 4. Support Set. The support set of a cell Ci contains at least all data points
which satisfy the following two conditions: (1) ∀q ∈ Ci.support, q 6∈ Ci .core, and (2)
there exists at least one point p ∈ Ci.core such that q ∈ kNN(p).

This suppport set strategy categorizes data points into two classes, namely core
points and support points. Each data point will be assigned as a core point to exactly one
cell, and possibly many support sets. Support points must be duplicated and transmitted
multiple times. A large number of support points increases the computation costs per
partition since many more points must be searched. Worst yet, it also introduces heavy



communication costs which often dominate the cost of distributed methods [2]. We
model these costs by the duplication rate in Definition 5. To minimize the duplication
rate, the support set should contain as few points as possible.

Definition 5. Given a datasetD and a distributed algorithmA for computing the kNN
of all points in D, the duplication rate dr(D ,A) = |Rec(D,A)|

|D| , where | D | represents
the cardinality of D and | Rec(D ,A) | the number of data records produced by the
partitioning of Algorithm A.

3 PkNN: Pivot-based Distributed kNN Search

3.1 The Overall PkNN Approach
Our Pivot-based Distributed kNN Search approach or in short PkNN not only ensures
autonomous kNN computation for each data partition, but also minimizes the data du-
plication caused by the use of support sets. PkNN is based on our critical observation
about the data dependent property of kNN distance. A common understanding in
the distributed analytics literature is that in shared-nothing distributed infrastructures
an analytics task should be completed in as few rounds (or MapReduce jobs) as pos-
sible – ideally in one round. This avoids reading and writing the data many times, as
well as high communication costs incurred from repeated shuffling phases, which are
often the dominant costs of a distributed algorithm [21]. Although widely adopted in
the literature, this approach does not hold in the distributed kNN search context due to
the data dependent property of kNN distance. In order to complete the kNN search in
one round, the distance to the support points has to be estimated a priori. However, the
distance from each point to its kNN may vary considerably across a dataset. It may be
small in dense areas, while very large in sparse areas. Therefore it is difficult to predict
the distance to support points and in turn accurately estimate the support set of each
data partition without precisely knowing the underlying data distribution characteris-
tics. Given only limited information about the data distribution, estimates must be very
conservative to ensure correctness [15]. This inevitably leads to prohibitively high data
duplication mitigating the benefit of the one round solution.
The Multi-round Approach. Inspired by the data dependent property observation,
PkNN no longer aims to complete the kNN search in one round. Instead it decomposes
the kNN search process into two steps, namely core kNN search and support kNN
search. The core kNN search step performs an initial kNN search only over the core
points in each cell. The kNN produced for a point p in this step is called the core kNN
of p. The key insight is that by examining the points in each cell directly we learn
essential information about the characteristics of the underlying data in each Voronoi
cell Vi. Specifically, we determine the core-distance and support-distance of each cell
to derive a tight upper bound on the distance from any core point to its support points.

After the support set of each Voronoi cell is determined, the support kNN search
step then completes the kNN search over only the support points of each cell. We ob-
serve that given a core point p ∈ Vi, its true kNN are guaranteed to be located among
its core kNN and Vi.support. In other words, no repeated computation ensues in our
multi-round kNN search strategy. Next we detail how to utilize the core-distance and
support-distance bounds to locate the support set.



3.2 Support Set Discovery

Our support set discovery method features a multi-granularity pruning strategy to ac-
curately yet efficiently locate support points. Given a cell Vi, by utilizing the support-
distance(Vi) and the distances between the pivots, it is able to quickly identify and
prune the set of Voronoi cells Vj that do not have any chance to contain the support
points of Vi. Furthermore, at a finer individual data point granularity, by introducing the
concept of boundary hyperplane, it quickly prunes the points based on their distances
from the hyperplane and the core-distance(Vi). First, we formally define the concepts
of core-distance and support-distance.

Definition 6. The core-distance of a Voronoi cell Vi.
core-distance(Vi) = max(|p, q|) ∀ p, q ∈ Vi.core where q ∈ kNN(p) ∈ Vi.core.

The core-distance of a given Voronoi cell Vi represents the maximum distance from a
core point p to its kth nearest core neighbor q. The core-distance effectively defines
an upper bound on the distance between any core point of Vi and the possible support
points. In other words, given a point q outside Vi, it is guaranteed not to be a support
point of Vi if its distance to any core point of Vi is larger than the core-distance(Vi).

The support-distance takes the pivot vi of cell Vi into consideration. It captures the
maximum distance of a possible support point of Vi to the pivot of Vi .

Definition 7. The support-distance of a Voronoi cell. support-distance(Vi) =
max(|vi, p|+ |p, q|) where q is the kth nearest neighbor of p ∀p, q ∈ Vi.core.

Cell Granularity Pruning. For each Voronoi cell Vi, we first utilize the support-
distance(Vi) to determine a set of candidate support cells, as shown in Figure 2. This is
equivalent to pruning the cells which could not possibly contain support points for Vi,
as stated in Lemma 1.

Lemma 1. Cell Granularity Pruning. Given Voronoi cells Vi, Vj and their correspond-
ing pivots vi, vj i 6= j, if the support-distance(Vi) ≤ |vi, vj |/2, then Vj does not contain
any support points of Vi.

Proof. Recall that by Definition 3, since q is in Vj , it is closer to the pivot vj than to
any other pivot. Therefore, |q, vi| ≥ |vi, vj |/2. We give a proof by contradiction: Let
some point q ∈ Vj be a necessary support point of cell Vi, i.e., q ∈ kNN(p) for p ∈ Vi.
Then by Definition 4, |p, q| < |p, r| where r ∈ Vi.core is the kth nearest neighbor of p
out of all the core points in Vi.

Assume that Theorem 1 is not true. Then we have:

|r, p|+ |p, vi| < |vi, vj |/2 by assumption
|q, p|+ |p, vi| < |vi, vj |/2 def 4
|q, vi| ≤ |q, p|+ |p, vi| triangle inequality
|q, vi| < |vi, vj |/2 transitivity

This results in a contradiction. If |q, vi| < |vi, vj |/2, then q ∈ Vi, which violates the
original assumption.



Fig. 2: Support-distance(V1) used to
define support cells.

Fig. 3: Core-distance(V1) used to de-
fine support points.

Based on Lemma 1, we can quickly determine whether a cell Vj is a support cell of
Vi by only computing the distance between their pivots. Performing this pruning at the
cell level, we not only avoid unnecessary data duplication, but also reduce the number
of cells each point must be checked against when mapping points to support sets.
Point Granularity Pruning. Even if a cell Vj is determined to be a support cell of Vi,
not every point in Vj is a necessary support point of Vi. Our point granularity pruning
strategy is based on the concept of a boundary hyperplane. Given two adjacent Voronoi
cells Vi and Vj , the boundary hyperplane is a hyperplane Hij that contains the mid-
point of Vi and Vj . Given a point q in Vj , the distance from q to Hij – denoted as
hp-distance(q,Hij) (simplified as hp-distance(q) when no ambiguity arises) – and the
core-distance of Vi together can determine whether q is a support point of Vi.

Lemma 2. Point Granularity Pruning. Given any point p ∈ Vi, q ∈ Vj , i 6= j, if
hp-distance(q) ≥ core-distance(Vi), then q 6∈ kNN(p)

Proof. Let r ∈ Vi be the furthest core kNN of p ∈ Vi. By Definition 6, |p, r| ≤
core-distance(Vi). Since |q, p| > hp-distance(q) and hp-distance(q) ≥ core-distance(Vi),
we get |q, p| > core-distance(Vi). Therefore, |q, p| > |p, r|. This proves that q is guar-
anteed to be not a kNN of p.

Figures 2 and 3 illustrate the intuition behind these core and support bounds in a 2D
space. In Figure 2 the support-distance of a cell Vi is used to determine a set of shaded
candidate cells which may possibly contain support points. Then in Figure 3 the core-
distance(Vi) is determined by the max distance from a point to its kth nearest neighbor
– in this case |p, r|. Points in the candidate support cells which fall within this distance
of the linear boundaries of Vi are assigned to Vi.support.
hp-distance Computation. When the commonly employed Euclidean or Mahalanobis
distances are used to define the space over which the Voronoi Diagram is constructed,
the boundaries of Voronoi cells are comprised of piecewise linear hyperplanes described
by Theorem 1. In this case, the exact hp-distance between a point and a cell can be
computed [19].

Theorem 1. The boundary between two adjacent Voronoi cells Vi and Vj is a hy-
perplane Hij containing their midpoint. In Rd the hyperplane is given as Hij =



y : yTn+ p = 0 where n is the normal vector orthogonal to the plane. ∀y ∈ Hij , |y, vi| =
|y, vj |. The distance of any point p ∈ Rd to the plane is hp− distance(q) = |sTn+p|

‖n‖2 .

In arbitrary metric spaces the exact computation of the hp-distance may not be
straightforward. Fortunately, the lower bound on hp-distance(q) in Theorem 2 is shown
in [13] via triangle inequality to hold. This lower bound can be used in place of the
exact value of hp-distance(q) in Lemma 2. The proof of this conclusion is straightfor-
ward. If the lower bound of hp-distance(q) is larger than core-distance(Vi), then the
exact hp-distance(q) is guaranteed to be larger than core-distance(Vi).

Theorem 2. Given two cells Vi and Vj with corresponding pivots vi and vj and a point
q ∈ Vj , hp-distance(q) ≥ |q,vi|−|q,vj |2 .

Point-granularity support assignment along with the cell-based pruning strategy in-
troduced in Lemma 1 together ensure that PkNN quickly discovers the support set of
each cell Vi, while minimizing the data duplication rate by only including a small set of
potential neighbors.

4 Outlier Driven Partition Adjustment

Our multi-round PkNN approach reduces the duplication rate dramatically and signif-
icantly outperforms the alternatives in both end-to-end execution time and scalability
to the size of the dataset as confirmed in our experiments. However, our experimental
study and theoretical analysis demonstrate that it still cannot handle datasets with bil-
lion point cardinality due to load imbalance. It is well known that load imbalance causes
job failures if the workload assigned to one machine exceeds its processing capacity.
Support-aware Load Balancing. Intuitively, pivot-based partitioning tends to generate
partitions with a balanced workload if pivots are uniformly randomly sampled from the
data utilizing for example a reservoir sampling technique [23]. More pivots are selected
from dense areas and fewer from sparse areas, naturally reflecting the distribution of the
data and tending to evenly partition even data with skewed distribution. Unfortunately,
the workload of each machine is not only determined by the cardinality of each data
partition, but also by the size of its support set. This makes the pivot-based partitioning
problem and the support point estimation problem strongly interdependent. The support
points are determined by the distribution characteristics of each data partition. Therefore
without knowing the data partitioning it is impossible to estimate the support points.

The remedy again comes from our multi-round PkNN approach. Since PkNN de-
composes kNN search into two steps, core kNN search and support kNN search, it
gives us the opportunity to adjust the partitions formed at the core kNN search step and
avoid an unbalanced workload during the support kNN search caused by the addition
of support points. In other words, it is not necessary to solve the ‘mission impossible’
of producing partitions with perfect balanced workload before conducting the kNN
search. First, uniform sampling is sufficient to produce partitions balanced enough for
core kNN search. Next, based on the support set discovered via the method introduced
in Sec. 3.2, we adjust partitions that could potentially overload the compute nodes.



Outlier Driven Partition Adjustment (ODA). Our partitioning adjustment method
is based on the key observation that given a data partition Vi, some particular points
in Vi lead to a large number of support points and in turn cause severe load imbalance.
These particular points, called outliers, are points that have large distance from their kth
nearest core neighbor. By Lemma 2, a point q is assigned to Vi.support if the distance
from q to the boundary hyperplane is smaller than the core-distance(Vi). Therefore
the larger the core-distance(Vi), the more points Vi.support contains. Since the core-
distance(Vi) is determined by the point p in Vi that is furthest from its core kNN, the
outliers will significantly increase the number of the support points. Leveraging this
observation, our outlier driven partition adjustment, or in short ODA not only ensures
no machine will be overloaded, but also minimizes the data duplication rate close to 1.

4.1 ODA: Outlier Driven Partitioning Adjustment

Definition 8. Given a compute cluster C with a constraint m on the number of points
that can be processed by a single machine Mi in C (mapped from the resource con-
straint of M such as memory), the goal of ODA is to ensure that each cell Vi of dataset
D satisfies the constraint: |Vi .core|+ |Vi .support | <= m,∀ Vi ∈ D .

Outier Discovery. ODA first discovers outliers by translating the data cardinality con-
straint m put on each single machine Mi to a distance constraint αi based on the distri-
bution of the core points in cell Vi. A point o is considered as an outlier if the distance
to its kth core neighbor is larger than αi.

ODA first maps the irregular shaped Voronoi cell Vi generated at core kNN search
step into regular hypersphere centered on the pivot vi. Assuming the core points Vi.core
are uniformly distributed in this hypersphere, then the radius r of Vi can be represented
utilizing the mean distance |vi, p| ∀p ∈ Vi.core. The number of core points c assigned
to Vi can be naturally considered as the “mass” of Vi. Then the “density” of Vi can be
modeled as density(Vi) =

c
Volume(Vi )

. Based on the well known mathematical prin-
ciple that the “volume” of a hypersphere in n dimensional Euclidean space, is pro-
portional to the nth power of the radius r by a constant factor, Volume(Vi) can be
represented by x × rn , therefore density(Vi) =

c
x×rn .

Assume that the distribution of the data close to a Voronoi cell Vi will be similar to
that contained within the cell, then a hypersphere V̂i centered also on the pivot vi but
with a larger radius will have the similar density to Vi. Suppose V̂i contains m points,
where m represent the data cardinality constraint of machine Mi. Then we have

c

rn
=

m

(r + αi)n
(1)

Here αi denotes the allowable distance to expand Vi to a sphere V̂i that contains no
more than m points. This value αi can be computed as follows.

αi =

(
m× rn

c

)1/n

− r (2)

For each Voronoi cell Vi, αi gives a customized max threshold on the distance to
points in Vi.support subject to resource constraints and the data distribution of Vi.core.



Lemma 3. If |p, q| < αi ∀ p, q ∈ Vi.core where q ∈ kNN(p) ∈ Vi.core,
then |Vi.core|+ |Vi.support| < m.

Proof. If the core k-distance of ∀ point p ∈ Vi.core is smaller than αi, then all points in
Vi.support are covered in hypersphere V̂i. Since V̂i covers at most m points, this proves
|Vi .core|+ |Vi .support | < m .

Based on Lemma 3, points p ∈ Vi.support are identified as outliers of cell Vi if
their distance to their core kNN cause core-distance(Vi) to be larger than αi.
Partition Adjustment. To ensure that outliers cannot skew a cell Vi and cause job fail-
ure, Vi will be adjusted before conducting the support kNN search step by redistributing
the outliers within the compute cluster. This eliminates the influence of the outliers on
our data-driven bounds, while still leaving the original partitioning intact.

Algorithm 1 ODA

1: function ODA(pivList)
2: avgDistList = calcAvgDistance(pivList)
3: outlierList = detectOutliers(pivList, avgDistList)
4: concat(pivList,outlierList)
5: supList = calcSupportList(pivList)
6: supportKNNSearch(pivList,supList)

The overall outlier-driven partition adjustment approach (ODA) is shown in Alg.
1. First, for each cell Vi the information necessary to compute αi, namely the average
distance from each point to the pivot vi can be easily collected during the initial pivot-
based data partitioning phase (Line 2). Then outliers are identified during core kNN
search. After the core k-distance of a point p is calculated, p is marked as an outlier if its
core k-distance exceeds the threshold αi (Line 3). Next when determining the support
set of Vi, these outliers are treated as additional ”special” pivots. These special pivots
differ from regular pivots in that no additional core points are assigned to their partitions
(Line 4). Since an outlier o would have already found their kth nearest neighbor from
among the core points (core kNN) in their original partition Vi, the distance from o to
its kth core kNN determines the core-distance of its new special partition. This in turn
is utilized to determine the support points of o (Line 5). In the support kNN search
step, kNN search is conducted only for the single core outlier point of each of these
”special” partitions (Line 6). Since by their nature the outliers are far from all other
points, it is unlikely that many additional support points will be mapped to the newly
formed special partitions.

By discovering and handling the outliers in this way, ODA ensures that no partition
Vi will exceed the processing capacity of each machine. Furthermore, the overall data
duplication rate of the whole dataset is further reduced to be close to 1 as confirmed in
our experiments. The overall structure of the full-fledged PkNN framework is shown in
Fig. 4.



Fig. 4: PkNN Framework.

5 Experimental Evaluation

5.1 Experimental Setup

All experiments are conducted on a shared-nothing cluster with one master node and
28 slave nodes. Each node consists of 16 core AMD 3.0GHz processors, 32GB RAM,
250GB disk, and nodes are interconnected with 1Gbps Ethernet. Each server runs Cen-
tOS Linux (kernel version 2.6.32), Java 1.7, Hadoop 2.4.1. Each node is configured to
run up to 4 map and 4 reduce tasks concurrently. Speculative execution is disabled to
boost performance. The replication factor is set to 3.
Datasets. We evaluate PkNN on real world data using OpenStreetMap [1], one of the
largest real datasets publicly available, which has been used in similar research work
[26]. It contains geolocation information for physical landscape features such as a build-
ings and roads all over the world. Two attributes are used, longitude and latitude. Hier-
archical datasets (Shown in Table 2) evaluate the scalability of PkNN with regard to the
data size. The datasets grow from a Massachusetts dataset of 10 million points to over
1 billion points covering more than the western hemisphere.

Real data are also used to evaluate the performance of PkNN in higher dimensions.
The Sloan Digital Sky Survey (SDSS) [8] is one of the largest astronomical catalogs
publicly accessible. We extracted a dataset containing 100 million records from the thir-
teenth release of SDSS data. In this experiment we utilize seven numerical attributes in-
cluding Right Ascension, Declination, three Unit Vectors, Galactic longitude and Galac-
tic latitude. The TIGER [9] dataset contains 70 million line segments, representing GIS
features of the United States. Four numerical attributes giving the longitude and latitude
of two endpoints of line segments are used.
Methods. We compare PkNN 3 against two state-of-the-art distributed solutions for
kNN search in MapReduce. The first called PBJ [15] uses pivot-based partitioning to
perform kNN Join. The authors of the [15] generously shared their code, which we
adapted to run on a single dataset. The second called Spitfire [5] uses grid-based par-
titioning to perform kNN search on a message-passing architecture. We have imple-
mented their method and adapted it for MapReduce.
Metrics. End-to-end execution time is measured, which is common for the evaluation of
distributed algorithms. Furthermore, the execution time for the key stages of the MapRe-
duce workflow is broken down to evaluate the performance of different stages of com-
putation. The other key metric is the duplication rate (Definition 5). This measure, cal-

3 PkNN source code available at http://solar-10.wpi.edu/cakuhlman/PkNN.



culated as the total number of core and support points processed divided by the number
of points in the input dataset, captures how effectively supporting areas are bounded.

5.2 Evaluating Data Duplication Rates

We first evaluate the data duplication rate of the three methods with respect to the num-
ber of data partitions. For a truly scalable solution, the benefit of adding partitions
(necessary as the data size grows) should not be outweighed by the increased com-
munication costs. Experiments are conducted on the Massachusetts dataset containing
10 million records. This data set has areas of varying density throughout the domain
space. k is fixed at 5 and the number of pivots is varied from 50 to 1100.

To perform a fair comparison of PkNN and PBJ, they are required to use the same
pivot set, as the choice of pivots impacts performance significantly. Therefore we omit
the grouping step introduced in [15], which starts with a very large number of pivots
and then groups them into a small number of final partitions. As their own evaluation
shows, this grouping step only results in a modest decrease in execution time [15]. The
number of partitions in Spitfire is tuned to a similar amount, although the equi-depth
partitioning algorithm [5] does not allow us to set an exact number of partitions. Both
the end-to-end runtime as well as the data duplication rate are measured for all methods.

Figure 5a shows PkNN and Spitfire clearly attain much lower data duplication than
PBJ (shown on the left), and consequently execution time (shown on the right). Even
using a small number of pivots, the minimum duplication rate for PBJ is around 30.
PkNN and Spitfire on the other hand remain close to the optimal rate of 1. The PBJ
method shows a quadratic increase in running time. Figure 5b compares the overall
execution time for PkNN and Spitfire. For these methods, adding more data partitions
improves runtime. Both methods perform similarly on this small data size. However,
as we demonstrate in Section 5.3, PkNN outperforms Spitfire due to its computational
complexity as the data size increases, despite both methods achieving low data duplica-
tion rates.
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(a) Runtime and duplication rate of PBJ, Spitfire and
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Fig. 5: Impact of number of partitions on Massachusetts dataset.
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Fig. 6: Varying dataset size from 10 million to over 1 billion data points.

5.3 Evaluating Scalability

In this section the scalability of PBJ, Spitfire, and PkNN with regard to the data size is
evaluated. For this set of experiments we use 2d data from the Open Street Map dataset
and fix k at 5. Figure 6 shows the end-to-end execution time of each method on datasets
of varying size, with the time for each key stage of the MapReduce workflow broken
down. In Figure 6a we observe that the single round kNN search approach of the PBJ
method is almost 20 times slower than the two kNN search rounds in PkNN. Attempts
to evaluate PBJ on data larger than 10 million points were not successful due to job
failures caused by the high data duplication rate.

Figures 6b and 6c show PkNN outperforms Spitfire by a factor of 3 and a factor
of 7 respectively. The first kNN job in Spitfire performs the support discovery step
using the concept of point hiding [5]. These experiments clearly show the computational
complexity of this approach hinders performance when the data contains hundreds of
millions of points. Figure 6d evaluates the performance of PkNN on a billion point
dataset, which neither competing method could handle. This demonstrates that PkNN
truly scales to handle modern data quantities.

Table 2 shows the dataset sizes and parameters used for evaluation. To choose the
number of pivots, it was observed that a ratio of 1: 30,000 points performed well on the
small dataset in initial experiments. Fewer pivots were experimentally determined to
perform better on larger data. Attempts to run PkNN on datasets larger than 10 million
without the ODA partition adjustment mechanism lead to job failures. However, by
identifying a small fraction of the data as outliers in each dataset ODA achieves a more
balanced workload allowing for the processing of these large datasets, as well as data
duplication rates close to 1.

5.4 Evaluating the Impact of the Number of Dimensions

Finally we show that PkNN effectively handles multidimensional data at scale. The
PBJ method cannot accommodate data beyond the 10 million points, and Spitfire only



Table 2: Dataset Sizes.
Dataset Points Pivots Mean Cell Size Outliers Duplication Rate

Massachusetts 10,000,000 300 33,333 3 1.93
Northeast 80,464,841 2400 33,527 56 1.66

North America 812,233,510 24,000 33,848 361 1.51
Western Hemisphere 1,185,194,762 11,000 107,744 1857 1.49

supports 2-dimensional data. Table 3 shows the performance of PkNN on the Tiger and
SDSS datasets which contain 70 and 100 million records and four and seven dimensions
respectively. We can see PkNN continues to achieve low data duplication rates under 2
on real multidimensional data as well as fast runtime.

Table 3: PkNN performance on multidimensional data.

Dataset Cardinality Dimension
End-to-end Execution Time (sec)

Duplication Rate
Pivot Selection Partitioning kNN 1 kNN 2

Tiger 72,729,686 4 41 148 167 203 1.18
SDSS 100,000,000 7 41 494 237 230 1.59

6 Related Work

kNN search is a well-studied problem with many solutions to mitigate its high compu-
tational complexity (O(n2)). In centralized algorithms, spatial indexing structures are
typically used, such as grid-based indices for low dimensional data or hierarchical tree
structures [11, 6, 14], as they achieve an O(nlogn) expected complexity.

In recent years, a number of distributed solutions for kNN search have been pro-
posed for message-passing and peer-to-peer distributed systems [12, 18, 5]. These ap-
proaches cannot be utilized on modern distributed architectures such as MapReduce
[22] and Spark [25] which are the focus of our work due to their scalability, fault tol-
erance, and ability to run on commodity hardware. A recent methods for kNN classi-
fication have targeted these platforms [17, 16], however they utilize a broadcast join
technique, where the neighbors of a small test set of points are found among a larger
training set distributed across a compute cluster. This technique is not applicable to our
problem where we aim to find all neighbors of all points in large datasets (over 1 billion
points) which cannot be processed in their entirety on a single machine.

A MapReduce based kNN search approach was proposed in [15]. Similar to PkNN
this approach also utilizes pivot-based partitioning to divide the dataset. Worst-case es-
timation based on the distance from pivots to a small number of points in each partition
bounds the size of the supporting sets. As shown in their experiments and confirmed by
our results (Sec. 5.2), this leads to extremely high data duplication (upwards of 20x the



size of the original dataset). Although an adaptation of the bound and pivot selection
method is presented in [24] as part of system specific to spatial data, the worst case
estimation of support sets still cannot scale to large datasets due to the duplication rate.
Our multi-round PkNN approach effectively cuts the duplicate rate close to be 1 by
adopting a multi-round strategy.

The Spitfire approach [5] effectively improves over the duplication rate of [15, 24]
by utilizing grid-based partitioning to divide the data and bound the support set. How-
ever, its point hiding concept to discover support sets leads to high computation costs
as the data size increases, as confirmed by our experiments (Sec. 5.3). Spitfire is also
specific to two-dimensional geo-location datasets while our PkNN approach is effective
in supporting the general case of multi-dimensional datasets.

7 Conclusion

This work presents PkNN, an innovative distributed approach for kNN search over
modern distributed architectures. We introduce a multi-round computation strategy along
with data-driven bounds and a tiered support discovery technique which effectively
limit data duplication. An outlier-driven partition adjustment mechanism ensures load
balance. PkNN for the first time scales kNN search to billion-point real world datasets
and gracefully handles multidimensional data.
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